828 research outputs found
Alien Registration- Black Bradley, Martha L. (Brunswick, Cumberland County)
https://digitalmaine.com/alien_docs/31619/thumbnail.jp
Managing ponds and lakes for aquaculture and fisheries in Missouri : controlling nuisance aquatic vegetation (2014)
Aquatic vegetation can be controlled using cultural, biological and chemical methods. Methods aimed at preventing vegetation problems are often the most successful, but control usually requires a combination of methods, as no single strategy provides satisfactory long-term results. This guide provides a general overview of each control method and discusses implementation strategies to help you make informed decisions about aquatic plant control.Revised 10/14/Web only
Air pollution assessment over Po valley (Italy) using satellite data and ground station measurements
Due to their effect on human health, the study of atmospheric pollutants is an important concern in the Po valley – northern Italy – one of the main industrialized and populated areas of the country. Our work focuses on the applicability of satellite Aerosol Optical Depth (AOD) retrievals in support of air quality monitoring and assessment in urban environments within the Po valley. This has been accomplished by using the implementation of the International MODIS/AIRS Processing Package (IMAPP) Air Quality Applications software, IDEA-I (Infusing satellite Data into Environmental Applications-International) over the Po valley study area. IDEA-I is a globally configurable software package that uses either Terra or Aqua MODerate resolution Imaging Spectro-radiometer (MODIS) AOD product retrievals to identify local domains of high values of aerosol. For our specific analyses, IDEA-I has been used over the large European domain, centred over the Po Valley. One year (2012) of MODIS AOD product retrievals from MODIS on board NASA’s Terra (MOD04) or Aqua (MYD04) satellite has been considered using IDEA-I in a retrospective study. These retrieved data have been also compared with the Particulate Matter (PM 10 ) measurements from the Italian Agency for Environmental Protection (ARPA) ground-based network stations. The acceptable results obtained by the correlation PM 10 – AOD suggest the satellite AOD as a good substitute for monitoring air quality over the Po valley domain. Yet the 10 km resolution of MODIS – AOD product is considered too large for air quality studies at urban scale. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS which provides AOD data at 1 km of spatial resolution. We have evaluated ability of MODIS product MOD04 and MAIAC products to characterize the spatial distribution of aerosols in the urban area through comparison with surface PM 10 measurements. Using MAIAC data at 1 km, we have examined the relationship between PM 10 concentrations, AOD, and AOD normalized by Planetary Boundary Layer (PBL) depths obtained from NOAA National Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS), for the same period of analysis. Results show that the MAIAC retrieval provides a high resolution depiction of the AOD within the Po Valley and performs nearly as well in a statistical sense as the standard MODIS retrieval during the time period considered. Results also highlight that normalization by the analyzed PBL depth to obtain an estimate of the mean boundary layer extinction is needed to capture the seasonal cycle of the observed PM 10 over the Po Valley
Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution
The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask applied to an independent aerosol retrieval will likely fail
Assessment of Biomass Burning Smoke Influence on Environmental Conditions for Multi-Year Tornado Outbreaks by Combining Aerosol-Aware Microphysics and Fire Emission Constraints
We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRFChem for its use in applications such as NWP and cloud-resolving simulations
Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines
A series of direct numerical simulations (DNS) of iso-octane/air turbulent premixed flames in the thin reaction zones regime have been performed in order to investigate the effect of pressure on heat release rate under conditions relevant to spark-ignition (SI) engines (up to 20 bar and 800 K in the unburnt gas). Chemistry is represented by a reduced kinetics mechanism containing 74 species and 976 reactions (reduced from CaltechMech). The effect of pressure has been isolated by fixing the Karlovitz numbers, the Lewis numbers, and the ratio of integral length scale to laminar flame thickness. On one hand, the results suggest that pressure has very limited effect on the mean heat release rate, such that turbulent burning velocity is proportional to the turbulent surface area. In addition, while the chemical pathways are strongly affected by pressure in laminar flames, the global effect of turbulence on these pathways is negligible, independent of pressure. On the other hand, the local distribution of heat release rate was found to be significantly affected by pressure through differential diffusion-chemistry effects
Comparison of Satellite Observations of Nitrogen Dioxide to Surface Monitor Nitrogen Dioxide Concentration
Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent
Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period
Chronic high surface ozone (O3) levels and the increasing sulfur oxides (SOx = SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3–4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SOx levels (up to ~0.7 ppb of SO2 and ~1.3 ppb of SO4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SOx observed at 1–4 km is estimated to enhance surface SOx over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SOx levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Adjoint sensitivity analysis indicated that SO2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10–70% of SO2 and 20–60% fine SO4 on-shore and over the most terrestrial areas, with contributions decreasing with in-land distance from the coast. Maritime emissions also modify the photochemical environment, shifting O3 production over coastal SC to more VOC-limited conditions. These suggest an important role for shipping emission controls in reducing fine particle and O3concentrations in SC
- …