370 research outputs found

    Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?

    Get PDF
    Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation

    Dark-adapted red flash ERGs in healthy adults

    Get PDF
    Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave. Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes. Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge. Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina

    Structural diversity in alkali metal and alkali metal magnesiate chemistry of the bulky 2,6-diisopropyl-N-(trimethylsilyl)anilino ligand

    Get PDF
    Bulky amido ligands are precious in s-block chemistry since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n-butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky aryl-silyl amido ligand [N(SiMe3)(Dipp)] (Dipp = 2,6-iPr2-C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s-block metal amides. Solvation by PMDETA or TMEDA gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure but TMEDA affords a novel, hemi-solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ-nBu)]∞ (M = Na or K), are also revealed though these breakdown to their homometallic components in donor solvent as revealed through NMR and DOSY studies

    GUDMAP - An Online GenitoUrinary Resource

    Get PDF
    The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a consortium of laboratories working to provide the scientific and medical community with gene expression data and tools to facilitate research (see "www.gudmap.org":http://www.gudmap.org). The data provided by GUDMAP includes large _in situ_ hybridization screens (wholemount and section) and expression microarray analysis of components of the developing mouse urogenital system (including laser-captured material and FACS-isolated cells from transgenic reporter mice). In addition, a high-resolution anatomy ontology has been developed by members of the GUDMAP consortium to describe the subcompartments of the developing murine genitourinary tract. 

The GUDMAP Database Development Team and Editorial Office - both based in Edinburgh - function to ensure submission, curation, storage and presentation of the data submitted by the GUDMAP consortium. Our collective aim is twofold: 1) to simplify the process of submission so that data is publically available as soon as it is produced; and 2) to organize this information in a database and ensure that the online interface is continuously available and easy to use. Thus far, we have developed a range of tools that help both the submitter and the end user. These include: an online annotation tool that simplifies _in situ_ data submission through an ontology-based graphical user interface; a database interface that allows users to browse and query expression data, and to filter data by organ system; a heat-map display of microarray data and analyses. Furthermore, the Edinburgh team has developed a GUDMAP Disease Database that queries associations between genes, genitourinary diseases, and renal/urinary and reproductive phenotypes. In collaboration with GUDMAP consortium members at the CCHMC (Cincinnati Children's Hospital Medical Center), the Disease Database is being extended to include mammalian phenotypes mapped to OMIM entries. 

By virtue of its impressive dataset and its ease of use we hope that the GUDMAP Website will continue to serve as a powerful resource for biologists, clinicians and bioinformaticians with an interest in the urogenital system

    Effect of exenatide on postprandial glucose fluxes, lipolysis, and ß-cell function in nondiabetic, morbidly obese patients

    Get PDF
    Aims: To investigate the effect of exenatide on glucose disposal, insulin secretion, ß-cell function, lipolysis, and hormone concentrations in non-diabetic, morbidly obese subjects under physiological conditions. Materials and methods: Patients were assigned to exenatide 10 µg twice daily (EXE, n=15) or control (CT, n=15) for 3 months. Patients received a meal test/tracer study (MTT) to measure endogenous glucose production (EGP), rate of oral glucose appearance (RaO), insulin secretion rate (ISR), ß-cell function, hepatic (HIR) and adipose tissue insulin resistance (AT-IR) and insulin sensitivity (IS). Results: Post-treatment the EXE group showed a significant reduction in body weight (p<0.001). The postmeal time-course of glucose, insulin, and ISR showed a lower peak between 60-180 min in phase with a reduction in RaO (p<0.01). After an initial similar suppression, EGP resumed at higher rates between 60-180 min (p=0.02) in EXE vs CT, while total RaO and EGP throughout the MTT were similar. In EXE, the postmeal glucagon, GLP1, and GIP responses were reduced (p<0.05). Fasting and postprandial lipolysis and ß-cell function were unaltered by active treatment. HIR, AT-IR, and IS were all improved after exenatide treatment (p<0.05). Conclusions: In morbidly obese non-diabetic subjects, exenatide causes weight loss, decreased postprandial glycaemia and glucagon response without changes in ß-cell function. These effects are consequent upon delayed oral glucose appearance in the circulation. Exenatide treatment is also associated with an improvement of hepatic, adipose tissue, and whole body insulin sensitivity with no influence on post-prandial lipolysis

    Effect of mitratapide on body composition, body measurements and glucose tolerance in obese Beagles

    Get PDF
    The objective of this study was to confirm that weight loss after treatment with mitratapide (Yarvitan®) is loss of adipose tissue. Obese dogs were treated with the recommended treatment schedule of mitratapide. Dual-energy X-ray absorptiometry (DEXA) was done before and after the treatment schedule. Body weight, feed consumption and pelvic circumference were recorded and a glucose tolerance test was performed. Dual-energy X-ray absorptiometry measurements showed an impressive loss of fat tissue, corresponding to a mean loss of approximately 41.6% of the body fat mass recorded before treatment. After treatment with mitratapide, the mean body fat percentage had returned within the normal range. At the end of the study, the dogs had lost on average 14.2% of their body weight and 15.2% of their pelvic circumference compared to baseline. The results also suggest that losing weight with mitratapide might help to reverse insulin resistance

    Lipopolysaccharide Renders Transgenic Mice Expressing Human Serum Amyloid P Component Sensitive to Shiga Toxin 2

    Get PDF
    Transgenic C57BL/6 mice expressing human serum amyloid P component (HuSAP) are resistant to Shiga toxin 2 (Stx2) at dosages that are lethal in HuSAP-negative wild-type mice. However, it is well established that Stx2 initiates extra-intestinal complications such as the haemolytic-uremic syndrome despite the presence of HuSAP in human sera. We now demonstrate that co-administering purified Escherichia coli O55 lipopolysaccharide (LPS), at a dosage of 300 ng/g body weight, to HuSAP-transgenic mice increases their susceptibility to the lethal effects of Stx2. The enhanced susceptibility to Stx2 correlated with an increased expression of genes encoding the pro-inflammatory cytokine TNFα and chemokines of the CXC and CC families in the kidneys of LPS-treated mice, 48 hours after the Stx2/LPS challenge. Co-administering the glucocorticoid dexamethasone, but not the LPS neutralizing cationic peptide LL-37, protected LPS-sensitized HuSAP-transgenic mice from lethal doses of Stx2. Dexamethasone protection was specifically associated with decreased expression of the same inflammatory mediators (CXC and CC-type chemokines and TNFα) linked to enhanced susceptibility caused by LPS. The studies reveal further details about the complex cascade of host-related events that are initiated by Stx2 as well as establish a new animal model system in which to investigate strategies for diminishing serious Stx2-mediated complications in humans infected with enterohemorrhagic E. coli strains
    corecore