8,523 research outputs found

    Electric fields as a means of controlling thin film flow over topography

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Gravity-driven, steady-state flow of a thin liquid film over a substrate containing topography in the presence of a normal electric field is investigated. The liquid is assumed to be a perfect conductor and the air above it an ideal dielectric. The Navier-Stokes equations are solved using a new depth-averaged approximation that is capable of analysing film flows with inertia, with the flow coupled to the electric field via a Maxwell normal stress term that results from the solution of Laplace’s equation for the electric potential above the film. The latter is solved analytically using separation of variables and Fourier series. The coupled solver is used to analyse the interplay between inertia and electric field effects for flow over onedimensional step and trench topographies and to predict the effect of an electric field on three-dimensional Stokes flow over a two-dimensional trench topography. Sample results are given which investigate the magnitude of the electric fields needed to suppress free surface disturbances induced by topography in each of the cases considered.This study is funded by the European Union via Marie Curie Action Contract MEST-CT-2005-020599

    Profiling filaments: comparing near-infrared extinction and submillimetre data in TMC-1

    Full text link
    Interstellar filaments are an important part of star formation. To understand the structure of filaments, cross-section profiles are often fitted with Plummer profiles. This profiling is often done with submm studies, such as Herschel. It would be convenient if filament properties could also be studied using groundbased NIR data. We compare the filament profiles obtained by NIR extinction and submm observations to find out if reliable profiles can be derived using NIR data. We use J-, H-, and K-band data of a filament north of TMC-1 to derive an extinction map from colour excesses of background stars. We compare the Plummer profiles obtained from extinction maps with Herschel dust emission maps. We present 2 methods to estimate profiles from NIR: Plummer profile fits to median Av of stars or directly to the Av of individual stars. We compare the methods by simulations. In simulations extinction maps and the new methods give correct results to within ~10-20 for modest densities. Direct fit to data on individual stars gives more accurate results than extinction map, and can work in higher density. In profile fits to real observations, values of Plummer parameters are generally similar to within a factor of ~2. Although parameter values can vary significantly, estimates of filament mass usually remain accurate to within some tens of per cent. Our results for TMC-1 are in agreement with earlier results. High resolution NIR data give more details, but 2MASS data can be used to estimate profiles. NIR extinction can be used as an alternative to submm observations to profile filaments. Direct fits of stars can also be a valuable tool. Plummer profile parameters are not always well constrained, and caution should be taken when making fits. In the evaluation of Plummer parameters, one can use the independence of dust emission and NIR data and the difference in the shapes of the confidence regions.Comment: accepted to Astronomy & Astrophysics; abstract has been shortened for astrop

    Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud

    Get PDF
    Aperture synthesis and single-dish (sub) millimeter molecular lines and continuum observations reveal in great detail the envelope structure of deeply embedded young stellar objects (SMM1, SMM2, SMM3, SMM4) in the densely star-forming Serpens Molecular Cloud. Resolved millimeter continuum emission constrains the density structure to a radial power law with index -2.0 +/- 0.5, and envelope masses of 8.7, 3.0, and 5.3 M_sol for SMM1, SMM3, and SMM4. The core SMM2 does not seem to have a central condensation and may not have formed a star yet. The molecular line observations can be described by the same envelope model, if an additional, small amount of warm (100 K) material is included. This probably corresponds to the inner few hundred AU of the envelope were the temperature is high. In the interferometer beam, the molecular lines reveal the inner regions of the envelopes, as well as interaction of the outflow with the surrounding envelope. Bright HCO+ and HCN emission outlines the cavities, while SiO and SO trace the direct impact of the outflow on ambient gas. Taken together, these observations provide a first comprehensive view of the physical and chemical structure of the envelopes of deeply embedded young stellar objects in a clustered environment on scales between 1000 and 10,000 AU.Comment: 46 pages, incl. 12 postscript figures, uses ApJ latex and psfig macro

    Preferred Basis in a Measurement Process

    Get PDF
    The effect of decoherence is analysed for a free particle, interacting with an environment via a dissipative coupling. The interaction between the particle and the environment occurs by a coupling of the position operator of the particle with the environmental degrees of freedom. By examining the exact solution of the density matrix equation one finds that the density matrix becomes completely diagonal in momentum with time while the position space density matrix remains nonlocal. This establishes the momentum basis as the emergent 'preferred basis' selected by the environment which is contrary to the general expectation that position should emerge as the preferred basis since the coupling with the environment is via the position coordinate.Comment: Standard REVTeX format, 10 pages of output. Accepted for publication in Phys. Rev

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    The self-dual gauge fields and the domain wall fermion zero modes

    Full text link
    A new type of gauge fixing of the Coulomb gauge domain wall fermion system that reduces the fluctuation of the effective running coupling and the effective mass of arbitrary momentum direction including the region outside the cylinder cut region is proposed and tested in the 163×32×1616^3\times 32\times 16 gauge configurations of RBC/UKQCD collaboration. The running coupling at the lowest momentum point does not show infrared suppression and compatible with the experimental data extracted from the JLab collaboration. The source of the fluctuation of the effective mass near momentum p=p=0.6GeV region is expected to be due to the domain wall fermion zero modes.Comment: 12 pages 2 figures, extended arguments and references adde

    Developments in CLARA accelerator design and simulations

    Get PDF
    We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. Updates on the electron beam simulations and code comparisons including wakefields are described. Simulations of the effects of geometric wakefields in the small-aperture FEL undulator are shown, as well as further simulations on potential FEL experiments using chirped beams. We also present the results of simulations on post-FEL diagnostics

    Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2

    Full text link
    We have performed low-temperature specific heat CC and thermal conductivity κ\kappa measurements on the Ni-pnictide superconductors BaNi2_2As2_2 (TcT_\mathrm{c}=0.7 K and SrNi2_2P2_2 (TcT_\mathrm{c}=1.4 K). The temperature dependences C(T)C(T) and κ(T)\kappa(T) of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual κ\kappa for BaNi2_2As2_2 rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba0.6_{0.6}La0.4_{0.4}Ni2_2As2_2 shows a mild suppression of TcT_\mathrm{c} and Hc2H_\mathrm{c2} relative to BaNi2_2As2_2.Comment: 5 pages, 3 figures, to be published in J. Phys.: Conf. Se

    Hypermatrix factors for string and membrane junctions

    Full text link
    The adjoint representations of the Lie algebras of the classical groups SU(n), SO(n), and Sp(n) are, respectively, tensor, antisymmetric, and symmetric products of two vector spaces, and hence are matrix representations. We consider the analogous products of three vector spaces and study when they appear as summands in Lie algebra decompositions. The Z3-grading of the exceptional Lie algebras provide such summands and provides representations of classical groups on hypermatrices. The main natural application is a formal study of three-junctions of strings and membranes. Generalizations are also considered.Comment: 25 pages, 4 figures, presentation improved, minor correction

    Stabilization of monodomain polarization in ultrathin PbTiO3 films

    Get PDF
    Using in situ high-resolution synchrotron x-ray scattering, the Curie temperature T-C has been determined for ultrathin c-axis epitaxial PbTiO3 films on conducting substrates (SrRuO3 on SrTiO3), with surfaces exposed to a controlled vapor environment. The suppression of T-C was relatively small, even for the thinnest film (1.2 nm). We observe that 180 degrees stripe domains do not form, indicating that the depolarizing field is compensated by free charge at both interfaces. This is confirmed by ab initio calculations that find polar ground states in the presence of ionic adsorbates.open15511
    corecore