8,523 research outputs found
Electric fields as a means of controlling thin film flow over topography
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Gravity-driven, steady-state flow of a thin liquid film over a substrate containing topography in the presence of a normal electric field is investigated. The liquid is assumed to be a perfect conductor and the air above it an ideal dielectric. The Navier-Stokes equations are solved using a new depth-averaged approximation that is capable of analysing film flows with inertia, with the flow coupled to the electric field via a Maxwell normal stress term that results from the solution of Laplace’s equation for the electric potential above the film. The latter is solved analytically using separation of variables and Fourier series. The coupled solver is used to analyse the interplay between inertia and electric field effects for flow over onedimensional step and trench topographies and to predict the effect of an electric field on three-dimensional Stokes flow over a two-dimensional trench topography. Sample results are given which investigate the magnitude of the electric fields needed to suppress free surface disturbances induced by topography in each of the cases considered.This study is funded by the European Union via Marie Curie Action Contract MEST-CT-2005-020599
Profiling filaments: comparing near-infrared extinction and submillimetre data in TMC-1
Interstellar filaments are an important part of star formation. To understand
the structure of filaments, cross-section profiles are often fitted with
Plummer profiles. This profiling is often done with submm studies, such as
Herschel. It would be convenient if filament properties could also be studied
using groundbased NIR data. We compare the filament profiles obtained by NIR
extinction and submm observations to find out if reliable profiles can be
derived using NIR data. We use J-, H-, and K-band data of a filament north of
TMC-1 to derive an extinction map from colour excesses of background stars. We
compare the Plummer profiles obtained from extinction maps with Herschel dust
emission maps. We present 2 methods to estimate profiles from NIR: Plummer
profile fits to median Av of stars or directly to the Av of individual stars.
We compare the methods by simulations. In simulations extinction maps and the
new methods give correct results to within ~10-20 for modest densities. Direct
fit to data on individual stars gives more accurate results than extinction
map, and can work in higher density. In profile fits to real observations,
values of Plummer parameters are generally similar to within a factor of ~2.
Although parameter values can vary significantly, estimates of filament mass
usually remain accurate to within some tens of per cent. Our results for TMC-1
are in agreement with earlier results. High resolution NIR data give more
details, but 2MASS data can be used to estimate profiles. NIR extinction can be
used as an alternative to submm observations to profile filaments. Direct fits
of stars can also be a valuable tool. Plummer profile parameters are not always
well constrained, and caution should be taken when making fits. In the
evaluation of Plummer parameters, one can use the independence of dust emission
and NIR data and the difference in the shapes of the confidence regions.Comment: accepted to Astronomy & Astrophysics; abstract has been shortened for
astrop
Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud
Aperture synthesis and single-dish (sub) millimeter molecular lines and
continuum observations reveal in great detail the envelope structure of deeply
embedded young stellar objects (SMM1, SMM2, SMM3, SMM4) in the densely
star-forming Serpens Molecular Cloud. Resolved millimeter continuum emission
constrains the density structure to a radial power law with index -2.0 +/- 0.5,
and envelope masses of 8.7, 3.0, and 5.3 M_sol for SMM1, SMM3, and SMM4. The
core SMM2 does not seem to have a central condensation and may not have formed
a star yet. The molecular line observations can be described by the same
envelope model, if an additional, small amount of warm (100 K) material is
included. This probably corresponds to the inner few hundred AU of the envelope
were the temperature is high. In the interferometer beam, the molecular lines
reveal the inner regions of the envelopes, as well as interaction of the
outflow with the surrounding envelope. Bright HCO+ and HCN emission outlines
the cavities, while SiO and SO trace the direct impact of the outflow on
ambient gas. Taken together, these observations provide a first comprehensive
view of the physical and chemical structure of the envelopes of deeply embedded
young stellar objects in a clustered environment on scales between 1000 and
10,000 AU.Comment: 46 pages, incl. 12 postscript figures, uses ApJ latex and psfig
macro
Preferred Basis in a Measurement Process
The effect of decoherence is analysed for a free particle, interacting with
an environment via a dissipative coupling. The interaction between the particle
and the environment occurs by a coupling of the position operator of the
particle with the environmental degrees of freedom. By examining the exact
solution of the density matrix equation one finds that the density matrix
becomes completely diagonal in momentum with time while the position space
density matrix remains nonlocal. This establishes the momentum basis as the
emergent 'preferred basis' selected by the environment which is contrary to the
general expectation that position should emerge as the preferred basis since
the coupling with the environment is via the position coordinate.Comment: Standard REVTeX format, 10 pages of output. Accepted for publication
in Phys. Rev
Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters
The dependencies of the melting point and the lattice parameter of supported
metal nanoclusters as functions of clusters height are theoretically
investigated in the framework of the uniform approach. The vacancy mechanism
describing the melting point and the lattice parameter shifts in nanoclusters
with decrease of their size is proposed. It is shown that under the high vacuum
conditions (p<10^-7 torr) the essential role in clusters melting point and
lattice parameter shifts is played by the van der Waals forces of
cluster-substrate interation. The proposed model satisfactorily accounts for
the experimental data.Comment: 6 pages, 3 figures, 1 tabl
The self-dual gauge fields and the domain wall fermion zero modes
A new type of gauge fixing of the Coulomb gauge domain wall fermion system
that reduces the fluctuation of the effective running coupling and the
effective mass of arbitrary momentum direction including the region outside the
cylinder cut region is proposed and tested in the
gauge configurations of RBC/UKQCD collaboration.
The running coupling at the lowest momentum point does not show infrared
suppression and compatible with the experimental data extracted from the JLab
collaboration. The source of the fluctuation of the effective mass near
momentum 0.6GeV region is expected to be due to the domain wall fermion
zero modes.Comment: 12 pages 2 figures, extended arguments and references adde
Developments in CLARA accelerator design and simulations
We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. Updates on the electron beam simulations and code comparisons including wakefields are described. Simulations of the effects of geometric wakefields in the small-aperture FEL undulator are shown, as well as further simulations on potential FEL experiments using chirped beams. We also present the results of simulations on post-FEL diagnostics
Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2
We have performed low-temperature specific heat and thermal conductivity
measurements on the Ni-pnictide superconductors BaNiAs
(=0.7 K and SrNiP (=1.4 K). The temperature
dependences and of the two compounds are similar to the
results of a number of s-wave superconductors. Furthermore, the concave field
responses of the residual for BaNiAs rules out the presence of
nodes on the Fermi surfaces. We postulate that fully gapped superconductivity
could be universal for Ni-pnictide superconductors. Specific heat data on
BaLaNiAs shows a mild suppression of and
relative to BaNiAs.Comment: 5 pages, 3 figures, to be published in J. Phys.: Conf. Se
Hypermatrix factors for string and membrane junctions
The adjoint representations of the Lie algebras of the classical groups
SU(n), SO(n), and Sp(n) are, respectively, tensor, antisymmetric, and symmetric
products of two vector spaces, and hence are matrix representations. We
consider the analogous products of three vector spaces and study when they
appear as summands in Lie algebra decompositions. The Z3-grading of the
exceptional Lie algebras provide such summands and provides representations of
classical groups on hypermatrices. The main natural application is a formal
study of three-junctions of strings and membranes. Generalizations are also
considered.Comment: 25 pages, 4 figures, presentation improved, minor correction
Stabilization of monodomain polarization in ultrathin PbTiO3 films
Using in situ high-resolution synchrotron x-ray scattering, the Curie temperature T-C has been determined for ultrathin c-axis epitaxial PbTiO3 films on conducting substrates (SrRuO3 on SrTiO3), with surfaces exposed to a controlled vapor environment. The suppression of T-C was relatively small, even for the thinnest film (1.2 nm). We observe that 180 degrees stripe domains do not form, indicating that the depolarizing field is compensated by free charge at both interfaces. This is confirmed by ab initio calculations that find polar ground states in the presence of ionic adsorbates.open15511
- …
