2,155 research outputs found
An Analysis of the Combustion Behavior of Ethanol, Butanol, Iso-Octane, Gasoline, and Methane in a Direct-Injection Spark-Ignition Research Engine
Future automotive fuels are expected to contain significant quantities of bio-components. This poses a great challenge to the designers of novel low-CO2 internal combustion engines because biofuels have very different properties to those of most typical hydrocarbons. The current article presents results of firing a direct-injection spark-ignition optical research engine on ethanol and butanol and comparing those to data obtained with gasoline and iso-octane. A multihole injector, located centrally in the combustion chamber, was used with all fuels. Methane was also employed by injecting it into the inlet plenum to provide a benchmark case for well-mixed “homogeneous” charge preparation. The study covered stoichiometric and lean mixtures (λ = 1.0 and λ = 1.2), various spark advances (30–50° CA), a range of engine temperatures (20–90°C), and diverse injection strategies (single and “split” triple). In-cylinder gas sampling at the spark-plug location and at a location on the pent-roof wall was also carried out using a fast flame ionization detector to measure the equivalence ratio of the in-cylinder charge and identify the degree of stratification. Combustion imaging was performed through a full-bore optical piston to study the effect of injection strategy on late burning associated with fuel spray wall impingement. Combustion with single injection was fastest for ethanol throughout 20–90°C, but butanol and methane were just as fast at 90°C; iso-octane was the slowest and gasoline was between iso-octane and the alcohols. At 20°C, λ at the spark plug location was 0.96–1.09, with gasoline exhibiting the largest and iso-octane the lowest value. Ethanol showed the lowest degree of stratification and butanol the largest. At 90°C, stratification was lower for most fuels, with butanol showing the largest effect. The work output with triple injection was marginally higher for the alcohols and lower for iso-octane and gasoline (than with single injection), but combustion stability was worse for all fuels. Triple injection produced a lower degree of stratification, with leaner λ at the spark plug than single injection. Combustion imaging showed much less luminous late burning with tripe injection. In terms of combustion stability, the alcohols were more robust to changes in fueling (λ = 1.2) than the liquid hydrocarbons
Characterisation of Spray Development from Spark-Eroded and Laser-Drilled Multihole Injectors in an Optical DISI Engine and in a Quiescent Injection Chamber
This paper addresses the need for fundamental understanding of the mechanisms of fuel spray formation and mixture preparation in direct injection spark ignition (DISI) engines. Fuel injection systems for DISI engines undergo rapid developments in their design and performance, therefore, their spray breakup mechanisms in the physical conditions encountered in DISI engines over a range of operating conditions and injection strategies require continuous attention. In this context, there are sparse data in the literature on spray formation differences between conventionally drilled injectors by spark erosion and latest Laser-drilled injector nozzles. A comparison was first carried out between the holes of spark-eroded and Laser-drilled injectors of same nominal type by analysing their in-nozzle geometry and surface roughness under an electron microscope. Then the differences in their spray characteristics under quiescent conditions, as well as in a motoring optical engine, are discussed on the basis of high-speed imaging experiments and image processing methods. Specifically, the spray development mechanism was quantified by spray tip penetration and cone angle data under a range of representative low-load and high-low engine operating conditions (0.5 bar and 1.0 bar absolute, respectively), as well as at low and high injector body temperatures (20 °C and 90 °C) to represent cold and warm engine-head conditions. Droplet sizing was also performed with the two injectors using Phase Doppler Anemometry in a quiescent chamber
Spray Development, Flow Interactions and Wall Impingement in a Direct-Injection Spark-Ignition Engine
Levels of liquid fuel impingement on in-cylinder surfaces in direct injection spark ignition engines have typically been higher than those in port-fuel injection engines due to in-cylinder injection and higher injection pressures. The result is typically an increase in the levels of un-burned hydrocarbons and smoke emissions which reduce the potential fuel economy benefits associated with direct injection engines. Although different injection strategies can be used to reduce these effects to some extent, full optimisation of the injection system and combustion process is only possible through improved understanding of spray development that can be obtained from optical engine investigations under realistic operating conditions. To this extent, the spray formation from a centrally mounted multi-hole injector was studied in a single-cylinder optical direct-injection spark-ignition engine under part-load conditions (0.5 bar intake plenum pressure) at 1500 RPM. A high-speed camera and laser illumination were used to obtain Mie-scattering images of the spray development on different in-cylinder planes for a series of consecutive engine cycles. The engine temperature was varied to reflect cold-start (20 °C) and fully warm (90 °C) engine conditions. A multi-component fuel (commercial gasoline) and a single-component fuel (iso-octane) were both tested and compared to investigate the effects of fuel properties on spray formation and wall impingement. An experimental arrangement was also developed to detect in-cylinder liquid fuel impingement using heat flux sensors installed on the cylinder liner. Two different injection strategies were tested; a typical single-injection strategy in the intake stroke to promote homogeneous mixture formation, as well as a triple-injection strategy around the same timing to assess the viability of using multiple-injection strategies to reduce wall impingement and improve mixture preparation. A sweep of different locations around the cylinder bore revealed the locations of highest fuel impingement levels which did not correspond directly to the nominal spray plume trajectories as a result of spray-flow interactions. These results were analysed in conjunction with the observed effects from the parallel imaging investigation. Copyright © 2007 SAE International
Damage function for historic paper. Part I: Fitness for use
Background In heritage science literature and in preventive conservation practice, damage functions are used to model material behaviour and specifically damage (unacceptable change), as a result of the presence of a stressor over time. For such functions to be of use in the context of collection management, it is important to define a range of parameters, such as who the stakeholders are (e.g. the public, curators, researchers), the mode of use (e.g. display, storage, manual handling), the long-term planning horizon (i.e. when in the future it is deemed acceptable for an item to become damaged or unfit for use), and what the threshold of damage is, i.e. extent of physical change assessed as damage. Results In this paper, we explore the threshold of fitness for use for archival and library paper documents used for display or reading in the context of access in reading rooms by the general public. Change is considered in the context of discolouration and mechanical deterioration such as tears and missing pieces: forms of physical deterioration that accumulate with time in libraries and archives. We also explore whether the threshold fitness for use is defined differently for objects perceived to be of different value, and for different modes of use. The data were collected in a series of fitness-for-use workshops carried out with readers/visitors in heritage institutions using principles of Design of Experiments. Conclusions The results show that when no particular value is pre-assigned to an archival or library document, missing pieces influenced readers/visitors’ subjective judgements of fitness-for-use to a greater extent than did discolouration and tears (which had little or no influence). This finding was most apparent in the display context in comparison to the reading room context. The finding also best applied when readers/visitors were not given a value scenario (in comparison to when they were asked to think about the document having personal or historic value). It can be estimated that, in general, items become unfit when text is evidently missing. However, if the visitor/reader is prompted to think of a document in terms of its historic value, then change in a document has little impact on fitness for use
Annually resolved North Atlantic marine climate over the last millennium
This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ(18)O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ(18)O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.We thank the members of the RV Bjarni Sæmundsson (Cruise No. B05-2006). This work was supported by the NERC-funded ULTRA project (Grant Number NE/H023356/1), NERC-funded CLAM project; (Project No. NE/N001176/1) and EU Millennium Project (Project number 017008). This study is a contribution to the Climate Change Consortium for Wales (C3W). We thank Brian Long (Bangor University) and Dr Julia Becker (Cardiff University) for their technical support, and Dr Manfred Mudelsee for his assistance with the trend analysis. We thank Dr Jessica Tierney and an anonymous reviewer for providing the constructive comments in the reviewing process
Efficient Bayesian-based Multi-View Deconvolution
Light sheet fluorescence microscopy is able to image large specimen with high
resolution by imaging the sam- ples from multiple angles. Multi-view
deconvolution can significantly improve the resolution and contrast of the
images, but its application has been limited due to the large size of the
datasets. Here we present a Bayesian- based derivation of multi-view
deconvolution that drastically improves the convergence time and provide a fast
implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method
Low Friction Flows of Liquids at Nanopatterned Interfaces
With the recent important development of microfluidic systems,
miniaturization of flow devices has become a real challenge. Microchannels,
however, are characterized by a large surface to volume ratio, so that surface
properties strongly affect flow resistance in submicrometric devices. We
present here results showing that the concerted effect of wetting . properties
and surface roughness may considerably reduce friction of the fluid past the
boundaries. The slippage of the fluid at the channel boundaries is shown to be
drastically increased by using surfaces that are patterned at the nanometer
scale. This effect occurs in the regime where the surface pattern is partially
dewetted, in the spirit of the 'superhydrophobic' effects that have been
recently discovered at the macroscopic scales. Our results show for the first
time that, in contrast to the common belief, surface friction may be reduced by
surface roughness. They also open the possibility of a controlled realization
of the 'nanobubbles' that have long been suspected to play a role in
interfacial slippag
Quantum fluctuations can promote or inhibit glass formation
The very nature of glass is somewhat mysterious: while relaxation times in
glasses are of sufficient magnitude that large-scale motion on the atomic level
is essentially as slow as it is in the crystalline state, the structure of
glass appears barely different than that of the liquid that produced it.
Quantum mechanical systems ranging from electron liquids to superfluid helium
appear to form glasses, but as yet no unifying framework exists connecting
classical and quantum regimes of vitrification. Here we develop new insights
from theory and simulation into the quantum glass transition that surprisingly
reveal distinct regions where quantum fluctuations can either promote or
inhibit glass formation.Comment: Accepted for publication in Nature Physics. 22 pages, 3 figures, 1
Tabl
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
Time of Day and its Association with Risk of Death and Chance of Discharge in Critically Ill Patients: A Retrospective Study.
Outcomes following admission to intensive care units (ICU) may vary with time and day. This study investigated associations between time of day and risk of ICU mortality and chance of ICU discharge in acute ICU admissions. Adult patients (age ≥ 18 years) who were admitted to ICUs participating in the Austrian intensive care database due to medical or surgical urgencies and emergencies between January 2012 and December 2016 were included in this retrospective study. Readmissions were excluded. Statistical analysis was conducted using the Fine-and-Gray proportional subdistribution hazards model concerning ICU mortality and ICU discharge within 30 days adjusted for SAPS 3 score. 110,628 admissions were analysed. ICU admission during late night and early morning was associated with increased hazards for ICU mortality; HR: 1.17; 95% CI: 1.08-1.28 for 00:00-03:59, HR: 1.16; 95% CI: 1.05-1.29 for 04:00-07:59. Risk of death in the ICU decreased over the day; lowest HR: 0.475, 95% CI: 0.432-0.522 for 00:00-03:59. Hazards for discharge from the ICU dropped sharply after 16:00; lowest HR: 0.024; 95% CI: 0.019-0.029 for 00:00-03:59. We conclude that there are "time effects" in ICUs. These findings may spark further quality improvement efforts
- …
