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ABSTRACT 

Future automotive fuels are expected to contain significant quantities of bio-components. This poses a great 

challenge to the designers of novel low-CO2 internal combustion engines because biofuels have very different 

properties to those of most typical hydrocarbons. The current paper presents results of firing a direct-injection 

spark-ignition optical research engine on ethanol and butanol and comparing those to data obtained with gasoline 

and iso-octane. A multi-hole injector, located centrally in the combustion chamber, was used with all fuels. 

Methane was also employed by injecting it into the inlet plenum to provide a benchmark case for well-mixed 

‘homogeneous’ charge preparation. The study covered stoichiometric and lean mixtures (λ=1.0 and λ=1.2), 

various spark advances (30–50° CA), a range of engine temperatures (20–90 °C) and diverse injection strategies 

(single and ‘split’ triple). In-cylinder gas sampling at the spark-plug location and at a location on the pent-roof 

wall was also carried out using a fast flame ionisation detector to measure the equivalence ratio of the in-cylinder 

charge and identify the degree of stratification. Combustion imaging was performed through a full-bore optical 

piston to study the effect of injection strategy on late burning associated with fuel spray wall impingement. 

Combustion with single injection was fastest for ethanol throughout 20–90 °C, but butanol and methane were just 

as fast at 90 °C; iso-octane was the slowest and gasoline between iso-octane and the alcohols. At 20 °C,  at the 

spark plug location was 0.96–1.09, with gasoline exhibiting the largest and iso-octane the lowest value. Ethanol 

showed the lowest degree of stratification and butanol the largest. At 90 °C, stratification was lower for most 

fuels, with butanol showing the largest effect. The work output with triple injection was marginally higher for the 

alcohols and lower for iso-octane and gasoline (than with single injection), but combustion stability was worse for 

all fuels. Triple injection produced a lower degree of stratification, with leaner  at the spark plug than single 

injection. Combustion imaging showed much less luminous late burning with tripe injection. In terms of 

combustion stability, the alcohols were more robust to changes in fuelling (=1.2) than the liquid hydrocarbons. 
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NOMENCLATURE 

  Air to fuel excess ratio (=AFR/AFRstoich) 

Pmax  Peak In-Cylinder Pressure 

b  MFB 

b10%  Duration of 0–10% MFB 

b10–90%  Duration of 10–90% MFB 

 
ABBREVIATIONS 

AFR  Air-to-Fuel Ratio 

AIT  After Ignition Timing 

ATDC  After intake Top Dead Centre 

BDC  Bottom Dead Centre 

BTDC  Before Compression TDC 

BMEP  Brake Mean Effective Pressure 

CA  Crank Angle 

CDM  Crank Degree Marker 

COV  Coefficient Of Variation (=Standard Deviation/Mean) 

DI   Direct Injection 

DISI  Direct Injection Spark Ignition 

EGR  Exhaust Gas Recirculation 

ETU  Engine Timing Unit 

EVC  Exhaust Valve Closure 

EVO  Exhaust Valve Open 

FFID  Fast Flame Ionisation Detector 

HC  unburned Hydro-Carbons 

IMEP  Indicated Mean Effective Pressure 

IMEPn  Net Indicated Mean Effective Pressure 

IVC  Intake Valve Closure 

IVO  Intake Valve Open 

LIF  Laser Induced Fluorescence 

MBT  Minimum spark advance for Best Torque 

MFB  Mass Fraction Burnt 

PFI  Port Fuel Injection 

RON  Research Octane Number 

RPM  Revolutions Per Minute 

SI  Spark Ignition 

SOI  Start of Injection 

TCP  Transistorised Coil-on-Plug 

TIFF  Tagged Image File Format 

WOT  Wide Open Throttle 

WWMP World-Wide Mapping Point
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INTRODUCTION 

Understanding the effect of new bio-components on engine combustion processes is an essential challenge 

towards adoption of future fuel stocks that are predicted to contain a significant bio-derived component in order to 

promote sustainability and reduce CO2 emissions. Ethanol can be produced from a variety of bio-sources and can 

raise the octane rating of gasoline due to its better anti-knock characteristics, allowing the use of higher 

compression ratios to achieve higher engine thermal efficiencies. Gasoline already contains 5% ethanol (E5) in 

some countries and is compatible with existing combustion systems but its use will have only limited impact on 

CO2 emissions. Therefore, there is pressure for the ethanol content of fuels to increase with some markets 

demanding much higher proportions (E85 or E100). However, not all components on the current fleets of vehicle 

are compatible with blends containing large amounts of ethanol. Ethanol’s water solubility also poses the need for 

rigorous procedures in its distribution and use. Furthermore, ethanol’s high latent heat of evaporation can cause 

problems for cold engine starts due to excessive charge cooling and resulting poor evaporation. At the other end, 

in hot climates when used in its pure form, ethanol can also result in adverse effects such as vapour lock; blending 

effects can also displace light fuel fractions such as butanes. Other alkyl alcohols, such as butanol, have also been 

suggested as possible gasoline components. Having twice as many carbon atoms as ethanol, butanol is more 

hydrocarbon-like in its properties. However, butanol lags far behind ethanol in terms of commercial production. 

Considering the immediate need for fundamental understanding of in-cylinder processes with bio-alcohols, no 

major work has been published that demonstrates direct comparisons between data obtained with ethanol, butanol 

and typical hydrocarbons in modern geometry Direct Injection Spark Ignition (DISI) engines, particularly under 

the same operating conditions and with identical fuelling system. Similarly, the effect of modern multiple 

injection strategies on combustion has not been reported in the literature for ethanol and butanol fuels, although 

various strategies have the potential to deal with the peculiarities of the atomisation process of both those alcohols 

that stem from their viscosity and surface tension characteristics. The following paragraphs attempt to review the 

literature on the subject in order to provide firm grounds for the contribution of the current paper. 

Combustion studies with ethanol have been mainly carried out in older generation Port Fuel Injection (PFI) spark 

ignition engines. For example the studies of Brinkman (1981), Gautam and Martin (2000), Davis and Heil (2000), 

Al-Farayedhi et al. (2004), Nakata et al. (2006) and Topgül et al. (2006) focused on performance characteristics, 

whilst the works of Guerrieri et al. (1995), Gautam et al. (2000), Sandiquist et al. (2001) and Martnez and Ganji 

(2006) on exhaust emission measurements. Similarly, the combustion of butanol/gasoline blends with PFI was 

investigated by Alasfour (1997) and Swaja and Naber (2010) in single-cylinder research engines. In an attempt to 

bridge the gap of our understanding between PFI and Direct Injection (DI) of alcohols, Zhu et al. (2008) reported 

on the combustion characteristics of ethanol on a single cylinder dual-fuel injection Spark Ignition (SI) engine 

with the following fuelling cases: a) gasoline PFI and DI, b) gasoline PFI and ethanol DI c) ethanol PFI and 

gasoline DI. In their study, the DI fuelling portion varied from 0–100% of the total fuelling over different engine 

conditions, while the engine air-to-fuel ratio remained constant. It was shown in all cases that the Indicated Mean 

Effective Pressure (IMEP) decreased by as much as 11% as DI fuelling percentages increased, except in case b) 

where the IMEP increased by 2% at light load. The combustion burn duration increased significantly at light load 

as DI fuelling percentage increased, but only moderately at Wide Open Throttle (WOT). In addition, the 

percentage of the ethanol in the total fuelling played a dominant role in affecting the combustion characteristics at 
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light load; but at heavy load (WOT), the DI fuelling percentage became the important parameter, regardless of the 

percentage of ethanol in the fuel. These results do not necessarily agree with those of Aleiferis et al. (2008) which 

showed that direct injection increased the speed of mass fraction burned in general with both gasoline and 

gasoline/ethanol blends. One reason for this discrepancy might be that Zhu et al. (2008) used a low pressure 

multi-hole side injector at an angle of 35° from the horizontal with a nine-hole orifice plate and a spray angle of 

60° (at 20 bar) compared to the pressure-swirl injector at 80 bar used in the study of Aleiferis et al. (2008). 

Although both injectors in those two studies were side-mounted, the higher injection pressure used in the latter 

study would not only improve atomisation significantly but would also reduce dramatically the injection pulse-

width; these factors would contribute to a better mixture preparation than obtained by the system used in Zhu et 

al. (2008). This example illustrates that results should not be assumed to carry over easily to various combustion 

systems and that there are difficulties in drawing general conclusions from such data in the literature, when 

changes in hardware and operating strategies can easily change the outcome of a particular test in practice. Other 

recent studies with various types of injection systems for DISI engines presented results with a diversity of 

gasoline-ethanol and gasoline-butanol blends but did not focus on comparing pure ethanol and butanol fuels 

(Kapus et al. 2007; Brewster, 2007; Aleiferis et al. 2010; Cairns et al. 2009; Wallner et al. 2009). The optical 

studies of Serras-Pereira et al. (2008) with ethanol and butanol DI, using early injection for homogeneous engine 

operation, as well as that of Smith and Sick (2007) with ethanol and iso-butanol DI, using late injection for 

stratified operation, provided some useful insights, but did not focus on various fuel types and strategies over a 

large area of low-load engine conditions. 

PRESENT CONTRIBUTION 

There are very limited experimental data which clarify the role that liquid transport properties have on mixture 

formation and combustion over a realistic range of DISI engine operating conditions. The main objective of the 

current work has been to study the combustion process of ethanol and butanol fuels versus gasoline and iso-octane 

operation in the context of advanced injection strategies that promote better mixture formation and in direct 

comparison to the gaseous fuel, methane. Specifically, a comprehensive study was undertaken to provide robust 

performance data of the fuels’ sensitivity to different operating conditions (stoichiometric and lean).  

Planar Laser Induced Fluorescence (LIF) in the same engine has provided imaging of the fuel’s concentration 

during mixture formation with a specially designed model fuel (Williams et al., 2008). Considering the 

importance of the in-cylinder Air-to-Fuel Ratio (AFR) at the spark plug location at ignition timing for all fuels, 

further LIF was considered. However, due to issues of quantification of the fuel concentration by LIF with such a 

diverse range of fuel and engine operating conditions, e.g. stemming from fluorescence quenching at different 

rates by the base fuels (Smith and Sick, 2007), it was decided to use in-situ Fast Flame Ionisation Detection 

(FFID) to measure the value of the mixture’s equivalence ratio at ignition timing. Specifically, mixture 

preparation was studied by FFID at the spark plug location and the liner wall in order to investigate the degree of 

charge stratification.  

To the best of the authors’ knowledge, this is the first time that such a complete set of data is presented for ethanol 

and butanol in direct comparison to typical hydrocarbons fuels in a latest geometry SI combustion system. It is 

believed that these measurements contribute towards a database of combustion rates which are essential for 

developing our knowledge of the underlying fundamental mechanisms of biofuel behaviour under realistic engine 
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conditions. The data can also assist modellers because the simulation of mixture preparation and combustion with 

fuels of such diverse physical and chemical properties is still very challenging. 

 
EXPERIMENTAL APPARATUS AND PROCEDURES 

RESEARCH ENGINE 

A single-cylinder research engine was used to investigate for this study. The engine is based on a flexible modular 

design for thermal or optical in-cylinder studies, provided by Ford Research Laboratories, Dearborn, USA. The 

current work employed a Jaguar 4-valve engine head based on a cylinder of a V8 4.5L prototype four-stroke DISI 

engine, with a vertical and centrally mounted multi-hole direct-injection system in a close-spacing arrangement 

with the spark-plug; the spark-plug was inclined at ~15° from vertical. The valvetrain was comprised of double-

overhead cam-shafts with direct acting lobes and a fixed valve-timing was used throughout. The geometric 

parameters of the engine, as well as other system components are summarised in Table 1, whilst Fig. 1 shows the 

engine configuration. With regards to intake geometry, the engine was fitted with an ‘inverted-U’ tumble-

inducing manifold upstream of the inlet ports. The piston was of elongated ‘Bowditch’ type and used three sets of 

lubricating rings made of Torlon (two sets of two thin rings in close spacing arrangement and a third wide bottom 

ring). These allowed running the cylinder liner oil-free to prevent fouling of the windows. Since the standard 

piston in the cylinder block (under the 45° mirror) was oil lubricated, in order to prevent oil vapour from passing 

through the rings and misting the 45° mirror, a vacuum network was designed from the engine head to the crank-

case providing ~0.3–0.4 bar negative pressure.  

For the purpose of comparing the fuels in the current paper, the quartz piston crown was replaced by a metal 

piston crown, and the quartz liner was replaced by a water cooled metal liner. An in-house designed water system 

was used to circulate cooling water round the engine head and cylinder liner and incorporated a temperature 

control system comprising of a three-way valve to divert water to a heat-exchanger and two 1.5 kW immersion 

heaters. A Eurotherm 3216 PID controller was used to select the temperature set-points and calibrate the 

temperature control dynamics. Water temperature control from 10 °C (nominal engine test cell cooling water 

temperature) to 90 °C was possible under motoring and firing conditions within a 1–2 °C range. For the current 

work, the influence of engine temperature was observed by using engine head and liner coolant temperatures of 

20 °C, 50 °C and 90 °C. Enough heat-soak time (30–40 min) was allowed at all conditions so that the engine head 

and liner components acquired enough thermal inertia to simulate fully warmed-up conditions.  

The ignition system used was a Transistorised Coil-on-Plug (TCP) type driven via a 12 Volt DC, 25 A power 

supply which also powered the injector driver. A commercial J-type ground electrode with a V-grooved central 

electrode, laser-iridium spark-plug was used (NGK IKAR6_IX9), having a heat rating of 6 and a 0.9 mm spark 

gap. A charge time of ~4 ms was employed.  

The ignition and injection timings were controlled using an AVL 427 Engine Timing Unit (ETU) which generated 

crank-angle or time-based controlled trigger signals. A combination of ‘working’ and ‘waiting’ cycles could be 

programmed with the ETU; more than one pulse group could also be generated per cycle. These capabilities were 

exploited for the FFID measurements as will be described later. For engine synchronisation, the ETU required two 

inputs to define a ‘clock’ term and a ‘reference’ signal term, i.e. the Crank-Degree-Marker (CDM) and the top-

dead-centre (TDC) signals respectively. Both signals were supplied from the output of an optical encoder on the 

engine’s crank shaft (Leine-Linde 503), with the CDM corresponding to 1800 pulses/revolution and the TDC 
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cycle-reference provided by a once/revolution TTL signal. The ETU used the TDC signal to reset its internal 

clock every crank shaft revolution in order to maintain optimum synchronization accuracy on a cycle-by-cycle 

basis.  

The A/F Ratio (AFR) was measured using a heated zirconia-based high-speed oxygen sensor (ECM AFR 

Recorder 1200) installed in the exhaust manifold ~150 mm along the exhaust pipe from the engine head. The 

sensor allowed programming of the H-C and O-C ratios in order to accommodate different hydrocarbon and 

alcohol fuels. The measurable AFR ranged from λ=0–10 or 0–150 AFR easily accommodating even aggressively 

lean operating strategies. The sensor was calibrated for oxygen sensitivity using compressed air and N2 gas 

bottles. Further details about the engine test bed arrangement can be found in previous publications by the current 

authors on in-cylinder spray dynamics and combustion (Serras-Pereira et al., 2007; Aleiferis et al., 2010). 

FUELS 

Five fuels were investigated: a typical commercial grade gasoline (RON95), iso-octane, n-butanol (1-butanol), 

ethanol and methane. A standard commercial grade European gasoline contains several hundred hydrocarbons, 

typically about 25–30% C5 or lower, 30–40% C6–C8 and the remainder C9–C10 hydrocarbon chains. Iso-octane 

is a single component of gasoline with boiling point temperature of 99 °C at atmospheric pressure, whilst, in 

contrast,; butanol boils at 118 °C and ethanol at 78.4 °C. The distillation curve of the gasoline fuel is shown in 

Fig. 2. The boiling points of iso-octane, ethanol and butanol at 1.0 bar are shown in Fig. 2 too as vertical lines; the 

boiling points of the single components n-pentane and o-xylene have also been included in Fig. 2 for reference 

purposes and in order to highlight two high and low volatility hydrocarbon components in gasoline, respectively. 

Table 2 summarises the most important physical and chemical properties of all the fuels used. It needs to be noted 

here that, within the objectives of the current work, it was decided to test pure n-butanol instead of blends of it (or 

of other isomers, like iso-butanol) with gasoline and/or iso-octane, in an attempt to establish fundamental effects 

of this straight chain alcohol in direct comparison to pure ethanol, rather than warrant wide use of this fuel in pure 

form (since source-to-wheel energy expenditure and other issues may dictate that it is better suited to use in low-

to-moderate blending levels). However, various blends of different butanol isomers with gasoline and iso-octane 

are currently also being studied and will be reported in a future publication. 

INJECTOR 

A six-hole injector designed for vertical installation in a DISI engine head in close spacing arrangement with the 

spark plug of a gasoline engine was used for this investigation. The injector had six nozzle holes in an asymmetric 

arrangement with different angles with respect to the vertical axis. More details about the exact injector geometry, 

nozzle-hole angles and spray formation in a quiescent environment and in a running DISI engine can be found in 

previous studies (van Romunde et al., 2007; van Romunde and Aleiferis, 2009; Aleiferis et al., 2010; , Aleiferis et 

al., 2011; Aleiferis and van Romude, 2012). For all work presented in this paper the fuel pressure was maintained 

at constant 150 bar. Methane was injected in the intake plenum using a Keihin KN3-2 gas injector and 4 bar 

injection pressure. Typically, when injecting gaseous fuels with PFI some air is displaced by the gaseous fuel, 

leading to an in-cylinder charge with lower total energy than if the gaseous fuel had been injected with DI after 

intake valve closure. Therefore, sometimes researchers elect to adjust the throttle to account for the ‘lost’ air. 

Within the objectives of the current study it was deemed necessary to keep the same intake plenum conditions for 

all fuels in order to keep the in-cylinder flow nominally matched to that of the other fuels because any effect of 
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engine load on the ‘mean’ flow and turbulence intensity at ignition could mask or exaggerate effects when 

comparing fuels. This issue was carefully considered throughout analysis of the acquired data and more comments 

will be provided in the results section. 

EXPERIMENTAL TECHNIQUES 

The experimental configuration consisted primarily of in-cylinder pressure acquisition and in-cylinder FFID 

measurements. Flame images were also acquired to compare two injection strategies, as will be discussed later. 

The baseline engine condition approximated to a well-known reference engine mapping point, known as the 

World-Wide-Mapping-Point (WWMP), producing ~2.62 bar Brake Mean Effective Pressure (BMEP) and 

referring to low-load, low-speed inner city driving conditions, of 1500 Revolutions Per Minute (RPM) with 0.5 

bar intake pressure. The engine valve timings at this load corresponded to levels of internal Exhaust Gas 

Residuals (EGR) of the order 15%, as discussed in more detail later. The ignition timing was varied in the range 

50°–30° Crank Angle (CA) Before compression Top Dead Centre (BTDC) to build up maps of each fuel’s 

behaviour. 

The baseline injection strategy used a single injection event with timing set early in the intake stroke to promote 

homogeneous mixture formation, typically with Start of Injection (SOI) 80° CA After intake Top Dead Centre 

(ATDC) and duration to fit the required AFR as observed by the lambda sensor. However, injection timings were 

also studied throughout a range of 60°–220° ATDC for comparison. Additionally, a multi-injection strategy with 

three small ‘split’ injections at SOI 60°, 70° and 80° CA (i.e. dwell time 10° CA) was also employed to asses the 

effect on mixture preparation and combustion. The three smaller injection TTL pulsewidths were roughly each 1/3 

duration of the single injection duration; however, this varied slightly depending on operating strategy and fuel 

type. The exact pulsewidths used for all conditions are summarised in Table 3.  

In-Cylinder Pressure Measurement and Analysis 

The in-cylinder pressure measurements for the present study were conducted with a water-cooled piezoelectric 

pressure transducer (Kistler 6041A). The sensor was installed flush with the engine pent-roof walls and was 

connected to a Kistler 5011B10 desktop charge amplifier. When the signal is digitised it is necessary to define a 

reference datum to convert it to absolute pressures. This can be done by using another pressure transducer towards 

the bottom of the cylinder barrel so that when the piston is close to Bottom Dead Centre (BDC) the transducer 

records the absolute and thus reference in-cylinder pressure. This was done with a water-cooled piezoresistive 

transducer (Kistler 4075A10 sensor and Kistler 4618A0 amplifier) mounted on the side of the cylinder 75 mm 

below the head gasket plane. When the piston was above the barrel transducer the pressure measured was 

atmospheric as a result of the ‘floating’ cylinder design of extended piston optical engines.  

The pressure signals were digitised at a sampling rate of 45 kHz on a cycle-to-cycle basis with a 12-bit analogue-

to-digital converter (National Instruments PCI-MIO-16E-4). This rate corresponded to digitisation every 0.2° CA. 

The uncertainty due to electrical interference was a maximum of 0.05 % of the full scale value for the in-cylinder 

pressure and 1% of full scale value for the intake plenum and barrel pressures, corresponding to an uncertainty of 

5.0 mbar and 10 mbar respectively. The CDM pulse from the crankshaft encoder was used via the ETU to 

provide the clock source for a LABVIEW-based data acquisition program. Heat release analysis of the in-cylinder 

traces and calculation of Mass fraction Burned (MFB) was performed using methods based on Ball et al. (1998) 

and Stone and Green-Armytage (1987). The effects of numerical integration on the calculation of the Indicated 
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Mean Effective Pressure (IMEP) from the in-cylinder pressure-volume diagram can be minimised provided the 

crank angle resolution is smaller than 1° CA (Brunt and Emtage, 1996). Errors can also arise from the effects of 

signal noise, accurate definition of con-rod length and the correct phasing of TDC with pressure. These 

researchers reported a 2.5% uncertainty in IMEP given a 0.5° CA uncertainty in the phasing of TDC. In the 

current arrangement the accuracy of the con-rod length was accurate to below 0.01% and the position of TDC was 

accurate to within less than 0.1° CA such that errors in IMEP and mass fraction burned due to the experimental 

arrangement were considered to be negligible. A representative number of cycles for analysis was identified on 

the basis of the Coefficient of Variation of IMEP (COVIMEP) that achieved steady-state values at about 150–200 

cycles depending on conditions, hence 200 cycles were used for each test point analysis. 

In-Cylinder Fast-FID Measurement and Calibration 

An HFR400 Cambustion© Fast-Flame Ionisation Detector (FFID) was used in order to carry out cycle-resolved 

hydrocarbon measurements inside the engine and in particular to investigate the degree of stratification in the 

mixture field at ignition timing for different fuels and injection strategies. The installation of the FFID head on the 

engine is shown in Fig. 3. The basic design of a FFID system involves a diffusion flame of hydrogen in a slow co-

flowing stream of air and a sampling system that isolates the pressure fluctuations at the sampling point in order to 

provide a constant mass flow of the sampled gas to the detector. Negligible ionisation occurs until hydrocarbon 

species are introduced and the ions are then collected by a charge collector located just above the burner. The 

response time allows intra-cycle measurements. A detailed description of the sampling system and its 

performance was given by Cheng et al. (1998); reviews of different applications including in-cylinder sampling 

were also presented. 

The FFID has been found to respond with proportionality to alkanes, cyclo-alkanes, alkenes, alkynes and aromatic 

compounds with different number of C atoms in each molecule of these families of compounds and the linearity 

of the instrument means that the FID is generally conceived as a carbon counting device for hydrocarbons. The 

response function for other carbon containing compounds has been shown to be different however. For example, 

for alcohols and other compounds where carbon is already oxidised in the starting sample, an oxidised carbon 

fragment splits out in the endothermic cracking stage of the reactions, and this oxidised carbon fragment is 

incapable of producing ionisation in the flame (Cheng et al., 1998). Specifically for alcohols, the C bonded to O in 

the alkyl-O-H group contributes only to a fraction of a C atom. This is governed by the bond rupture process and 

whether it occurs through the removal of the H atom (which does not produce ions) or the removal of OH, which 

does. The contributions of various bonds to the effective carbon number FFID response are given in Cheng et al. 

(1998); for primary alcohols the effective contribution was 70% for ethanol and 85% for butanol. More details can 

be found in recent publications (Price et al., 2007; Dec et al. 2008; Wallner, 2011). 

The main difficulty with the FFID technique applied to in-cylinder measurements is controlling the sample mass 

flow rate to the FID head, which pulsates substantially as a result of the range of pressures which the sample 

probe is exposed to, e.g. sub-atmospheric to ~20–30 bar, for part-load engine operating conditions similar to those 

used in the present study. For intake and exhaust pressure measurements a constant pressure chamber is used 

between the sampling inlet and the FID detector itself, operated at below atmospheric pressure to act as a damping 

chamber and maintain a constant pressure across the feed tube to the FID chamber; for in-cylinder measurements 

however this is not enough. The flow resistance through the sample tube needs to be reduced further by using a 
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smaller diameter tube of 0.008" and the constant pressure chamber volume must be increased substantially, which 

can be done by opening it to atmosphere i.e. infinite volume. One of the drawbacks from such a configuration is 

that positive flow to the FID head only occurs when the in-cylinder pressure is substantially above atmospheric; 

the engine intake valve timing therefore dictates when this begins to occur and given the limited response time of 

the FFID relative to engine speed, certain checks need to be made to make sure there is enough time for the signal 

to reach its plateau value every cycle. 

The expected characteristics of a typical in-cylinder FFID signal are shown in Fig. 4. The signal is initially low 

due to burned gas left over from the previous cycle; as fresh charge enters the cylinder and mixes with the residual 

charge the signal rises gradually but is not yet valid due to low FFID response as a result of low sample inlet 

pressure. As the cylinder pressure rises during compression, the FFID response improves and at some point the 

signal reaches a plateau level which is the pre-flame HydroCarbons (HC) mole fraction. The value measured is 

actually less than the equivalent air/fuel ratio mixture because the residual gas acts as a dilutant. When the in-

cylinder flame arrives there is a sharp drop in the signal and the fall-time can be interpreted as the response time 

of the FFID. The signal remains low while it is exposed to burned gas, but later in the cycle the FFID detects post-

flame hydrocarbons released from the crevices and the signal rises again slightly. The signature of the signal in 

this area depends on the location of the sample inlet, with higher values measured when the sample probe inlet is 

close to the walls and protrudes only slightly, ~0.1–1 mm. 

The FFID response time is also adversely affected by condensation and liquid fuel in the sample tube and a heated 

line was therefore used at 150 °C to reduce these effects. Suitable calibration with a known concentration gas is 

also necessary, however since quite high concentrations are necessary for calibration at stoichiometric conditions, 

the gas is usually mixed with nitrogen. Unfortunately, in real engine measurements the HC sample is mixed with 

air and the FFID signal is sensitive to the oxygen content in the sample flow, leading to a decreased response 

function (termed oxygen synergism). To overcome these effects, the engine was motored and fired at 

stoichiometric conditions with methane gas using intake plenum injection to provide as a homogeneous 

concentration field at ignition timing as possible; dynamic calibration under real operating conditions was thus 

achieved. This FFID signal then allowed direct comparison of the HC mole fractions obtained using other liquid 

fuels and estimation of relative air/fuel ratios. A spark-plug sampling kit from Cambustion was used to obtain in-

cylinder samples of HC just next to the spark electrode (~1 mm). Another sampling probe was positioned in the 

pent-roof wall (~2 mm above the wall face) using an adaptor to fit the in-cylinder pressure transducer mounting 

hole and thereby investigate the stratification of the charge. The FFID settings are summarised in Table 4. The 

FFID signal was digitised using LABVIEW and post-processed for statistical analysis in MATLAB.  

Motoring, firing and skip-firing engine operation were used to guarantee the integrity of the FFID signals 

acquired. Due to the late intake valve closing the pressures at ignition timing were quite low, ~3.5–4 bar and the 

time response of the FFID was not fast enough to fully achieve a plateau signal in every cycle. Therefore, ‘skip-

firing’ was used; the engine was fired for 10 cycles and motored for 10 cycles. This was useful because a signal 

over a 20 cycle batch allowed a sufficient average signal to be obtained. Fifty duty-cycles of this skip-fired 

strategy were employed i.e. 1000 engine cycles, and the average signal was obtained as shown in Fig. 5. The data 

is shown for methane fuelling at stroichiometric conditions. The first FFID peak identifies the first firing cycle in 

the sequence and shows that its value was higher than for the remaining firing cycles due to the absence of 
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residual gas. The remainder of the cycles can be seen to be quite similar however, demonstrating a low level of 

cyclic variation and indicating that a residual gas ‘steady state’ condition was reached within 1 firing cycle. After 

the spark was switched off, the value of the peak FFID signal increased to a level which represented the mole 

fraction measured without residuals. The difference between this signal levels and the firing levels allowed 

estimation of the residual gas fraction. This was found to be ~0.15–0.2 for the conditions studied and the values 

were found in agreement with values calculated by modelling the engine’s operation using geometrical and valve 

timing data via the methodology offered by the Lotus engine simulation software (2010). Fig. 6 shows evidence 

of insufficient signal response time available under firing conditions and why such a skip-firing strategy was 

necessary to achieve a reliable FFID plateau value. The plateau level for stoichiometric methane combustion had a 

Coefficent Of Variation (COV) of only 1.0 % at the spark-plug and 1.7 % at the wall location. Since the 

concentration field was as homogeneous as possible, the variation probably stemmed from variations in the 

residual gas fraction from cycle-to-cycle and contributions from the measurement accuracy of the instrument 

itself. Evidence of the sensitivity and linearity of the instrument with different air/fuel ratios is demonstrated in 

Fig. 7 for a liquid fuel, iso-octane, also obtained with the skip-firing strategy outlined.  

In-Cylinder Combustion Imaging 

For the purposes of the current paper it was deemed necessary to image the in-cylinder combustion event up to 

completion in the expansion stroke in order to identify late burning on the cylinder walls from effects related to 

the different injection strategies used. To achieve this, the standard aluminium piston crown was replaced by a 

full-bore optical crown designed and made of Perspex in one piece by the University of Oxford; see Ma et al. 

(2007) and Aleiferis et al. (2011) for more details. The fully optical crown connected to the Bowditch piston using 

the same thread as the standard metal crown. This configuration extended the 65 mm diameter optical access used 

in previous studies, e.g. Serras-Pereira et al. (2007, 2008), Aleiferis et al. (2010), to 89 mm in diameter, i.e. the 

full bore diameter, as shown in Fig. 1. Additionally, the fully optical crown was designed with a ‘fish eye’ lens 

configuration (by keeping the top of the crown flat and ‘contouring’ the inside/lower part of crown) to allow full 

clear optical access up to the liner walls via a 45° mirror housed under the crown ‘inside’ the Bowditch. More 

details about this piston arrangement as used in the same engine for spray wall impingement imaging can be 

found in Aleiferis et al. (2011). A high-speed camera (Photron APX-RS) was used to obtain combustion images 

with 640480 pixel resolution with a typical frame rate of 9 kHz, i.e. 1 °CA resolution at 1500 RPM. More details 

about the imaging equipment can be found in other studies by the current authors (Serras-Pereira et al., 2007, 

2008). The images were stored in 8-bit resolution in Tagged Image File Format (TIFF) files (256 greyscales). The 

camera was triggered externally with a pulse supplied by the ETU for synchronization with the engine and other 

instrumentation.  

 
RESULTS AND DISCUSSION 

FUEL TYPE SENSITIVITY 

The engine’s operating performance at stoichiometric conditions with single injection strategy is shown in Fig. 8 

for all fuels at 20, 50 and 90 °C engine temperature. The measurements acquired at lean conditions with single 

injection strategy and at stoichiometric conditions with triple injection strategy are presented in Figs. 9–10, 

respectively. The figures include the following combustion parameters: peak in-cylinder pressure (Pmax), the 

timing or location of peak pressure (θPmax, i.e. combustion phasing), the net Indicated Mean Effective Pressure 
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(IMEPn), the 0–10% MFB duration (χb10%, i.e. the early flame kernel growth period) and the 10–90% MFB 

duration (χb10–90%, i.e. the main combustion period). The Coefficient Of Variation (COV) of all parameters has 

also been plotted within the same figures for comparison. 

In-Cylinder Pressure and IMEP 

The phasing of Pmax can act as a measure of the efficiency of combustion when studied in conjunction with the 

IMEP. The cycle-to-cycle variations in Pmax and IMEP are typically used as a measure of the stability of 

combustion. Additionally, the amplitude of Pmax and its phasing can me used as a relative measure of the 

propensity towards ‘knocking’ combustion when changing spark advance. In general, the sensitivity of the 

combustion process to ignition advance was similar for most fuels in terms of Pmax and phasing of Pmax; this is 

seen by the similar gradients of the trend lines in Fig. 8. However, the absolute values of Pmax and the phasing of 

Pmax were both clearly different amongst fuels; there appeared to be a distinct performance hierarchy which was 

almost independent of engine operating temperature. This was also reflected in the COVPmax. For all fuels tested, 

greater ignition advance resulted in higher Pmax and lower cycle-to-cycle variations (COVPmax). Similarly, higher 

engine temperatures generally resulted in higher pressures and lower levels of variation across the range of 

ignition timings that were tested. At 20° C engine temperature, the highest levels of Pmax were recorded for 

ethanol, methane, butanol, gasoline and iso-octane respectively. It needs to be noted though that butanol was 

difficult to ignite at these conditions and the engine required a period of ~1 min in order to ignite consistently and 

stabilize in operation. The largest difference in Pmax between ethanol and iso-octane was recorded at 40° CA spark 

advance and was ~5 bar in magnitude. Ethanol’s Pmax was also ~5° CA advanced relative to TDC. The fuel 

hierarchy was inverted for the COVPmax and IMEP. Ethanol exhibited the lowest values of COVPmax (~5% at the 

largest spark advance) and iso-octane the highest (about 10–13 % over the full range of tested ignition timings). 

At 50 °C butanol showed clear signs of approaching ethanol’s Pmax and at 90 °C the performance of the two 

alcohols at 90 °C was very similar. The COVPmax was also very similar for ethanol and butanol throughout 50–90 

°C, typically about 4–7% depending on spark advance. Gasoline and methane remained quite close over the full 

range of temperatures and spark advances, with greatest similarity at the higher spark advances when the engine 

was cold and at the lower spark advances when the engine’s set temperature was 50–90 °C. Iso-octane remained 

clearly isolated throughout most tested conditions, except with the large spark advances at 50–90 °C. At the larger 

spark advances of 40°–50° CA the COVPmax of both alcohols was quite similar to that of methane (4–6%) and the 

Pmax of methane was lower than the alcohols’ by only 0.5–1.5 bar. It is interesting to point out that the differences 

in spray break-up and evaporation at low temperatures for the two alcohol fuels observed in Serras-Pereira et al. 

(2008) and Aleiferis and van Romunde (2012), did not really appear to impede those fuels from achieving similar 

or better performance than the hydrocarbons.  

With respect to IMEP, it was clear that the ignition timing did not impact significantly the useful work done by 

the engine. At the cold-start representative engine condition of 20 °C, all fuels showed a preference for more 

advanced ignition timing, between 40°–45° CA BTDC; this also produced the lowest levels of COVIMEP (typically 

1.5–2.5%). Specifically, methane and gasoline produced the lowest COVIMEP, whilst butanol produced generally 

the highest COVIMEP followed by iso-octane and ethanol. Based on the atomisation processes of the fuels 

described in (2008) and Aleiferis and van Romunde (2012), it may be speculated that the differences in the 

mixture preparation quality did contribute to the observed levels of COVIMEP, especially at the cold engine 
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conditions. This note is consistent with the data at 90 °C, where all fuels produced similar levels of COVIMEP, 

~2%, with ethanol at the higher end and iso-octane at the lower end of variability, particularly at the higher spark 

advances. It should also be reminded that the fuel injection durations were much longer for the alcohols, reducing 

their effective time for evaporation and the potential for the formation of a homogeneous concentration field.  

At the lean condition of =1.2 in Fig. 9, the levels of IMEP dropped by about 35% for most fuels in comparison 

to =1.0. Overall, the alcohols were more robust to changes in fuelling in comparison to the liquid hydrocarbons. 

The COVIMEP increased to levels of beyond 10–20% for iso-octane at 20–50 °C but the alcohols did not exceed 

8% even at their worst points. Gasoline lied lower than iso-octane but higher than both alcohols in terms of 

COVIMEP . Methane maintained the lowest levels of COVIMEP and COVPmax at lean conditions in comparison to all 

the other fuels. The plots of the phasing of Pmax also clearly reflected the different behaviours amongst fuels. In 

contrast to stoichiometric conditions, lean iso-octane and gasoline showed a non-linear relationship with the spark 

advance, whilst the alcohols and methane maintained a monotonic relationship of lower gradient to that at =1.0. 

Overall, ignition timing had to be advanced by 10–15° CA in order to achieve maximum IMEP with minimum 

COVIMEP. 

Mass Fraction Burned and Combustion Duration 

In the initial stages of combustion, the 0–10% MFB period (χb10%) showed that ethanol had consistently the fastest 

burning rate throughout the range of spark advances tested. The early burning period for methane was nearly 

identical in duration to ethanol’s but the levels of COVχb10% were slightly lower for methane (~1%). Butanol was 

the third fastest fuel for the initial burning period but produced the highest COVχb10% at 20 °C, ~7.5% compared 

to ~6% for methane (most probably due to fuel films on the walls from spray impingement that led to a large 

degree of stratification. Gasoline and iso-octane had the slowest initial burn periods, with iso-octane ~20% slower 

than the fastest fuels, despite its AFR at the spark-plug location being on the rich side as will be discussed in the 

next section. At 50 °C the differences in the 0–10% MFB duration reduced noticeably, with the largest difference 

now only 12–14% between iso-octane and ethanol. The levels of variability also reduced, in particular for the 

alcohols. Ethanol’s behaviour may be a result of the local AFR at the spark plug location that was consistently 

close to stoichiometric or slightly rich. Butanol produced a very similar 0–10% MFB duration at 50 °C compared 

to both ethanol and methane. At 90 °C these trends were further emphasised with ethanol, butanol and methane 

tightly grouped as the faster fuels and gasoline and iso-octane clearly slower across the range of spark timings. It 

should be noted that the 0–10% MFB duration for methane did not change significantly with increasing engine 

temperature but was clearly reduced for the liquid fuels, indicating that temperature effects had specific bearing 

on the combustion quality of the liquid fuels. The latter can be associated with better fuel mixing and higher 

laminar flame speeds due to higher temperature at ignition timing. 

The main combustion stage, described by the 10–90% MFB (χb10–90%) showed how similarities between fuels in 

the early stages of combustion could disappear by the later stages. For example, methane was one of the fastest 

early burning fuels, but showed a slower main period of combustion which increased its χb10–90% duration. The 

liquid fuels on the other hand showed more consistency between early stage combustion duration and main stage 

combustion duration. The main stage of combustion at 20 °C was clearly fastest for ethanol, with butanol and 

gasoline very similar and iso-octane and methane the slowest (depending on spark advance). At 50 °C, the χb10–90% 

duration of butanol, gasoline and iso-octane were nearly identical for most ignition timings, while ethanol and 
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methane remained fastest and slowest respectively and were both negatively affected by large spark advances. At 

90 °C, butanol exhibited generally faster χb10–90%, followed by overlapping ethanol and gasoline, then iso-octane 

and finally methane. Iso-octane and methane were particularly sensitive to larger spark advances at high 

temperatures, which increased their burn durations and levels of COV. The results appeared to suggest that fuels 

which were likely to experience the slowest evaporation rates overall, produced faster main combustion periods. 

Whether this resulted from the presence of micro-sized droplets in the charge that increased the burn rate (e.g. by 

enhancing flame cellularity) is not explicitly known under the range of conditions studied, but it is a clear 

possibility for the worst atomised fuels. It is interesting to note, however, that the recent work by Szwaja and 

Naber (2010) on butanol combustion in an SI engine with PFI, found that pure butanol was always faster than 

gasoline at the fully warm engine conditions they used. 

More to the point made about the effect of spark advance on IMEP earlier, there was also clear trend in the 

COVχb10–90% for all fuels in terms of optimum spark timing at different engine temperatures. At 20 °C, the fastest 

and most repeatable combustion duration was achieved with 40° CA spark advance, but this was seen to migrate 

towards more retarded timings at higher temperatures, 35° CA at 50 °C and 30° CA at 90 °C; these advances also 

coincided with the lowest levels of COVIMEP. Given the relatively flat IMEP relationship with spark advance over 

most engine temperatures, it appeared that there was limited room for using fuel-specific timings to achieve 

higher work output, but it was clear that while retarded ignition shortened the early burn period (as a result of 

higher in-cylinder pressures and temperatures at ignition timing), the benefit did not necessarily extend into the 

main combustion stage, which was generally slower except under fully warmed-up engine conditions. Overall, a 

spark advance of 35° CA was a relatively good compromise as the representation of the Minimum spark advance 

for Best Torque (MBT) across all fuels at engine temperatures 50–90 °C for =1.0. For lean fuelling in Fig. 9, the 

early burning period of 0–10% MB was typically prolonged by about 5–7° CA for all fuels throughout the full 

range of spark advances, with gasoline and iso-octane affected the most.  

Careful consideration of the fuels’ laminar burning velocities is essential for interpretation of the MFB data. Such 

data are available from various sources for typical fuels, including butanol recently, but most have been taken at 

various ‘engine-like’ conditions of temperature and pressure, hence it is not straightforward to carry out direct 

comparisons amongst fuels, especially if the effect of residual gas needs to be taken into account too, e.g. see 

Jerzembeck et al. (2009), Bradley et al. (1998), Gu et al. (2000, 2009), Bradley et al. (2009), Beeckmann et al., 

(2009, 2010). A thorough literature review of such data is currently being undertaken by the current authors and 

the results will be unified and presented in a forthcoming publication. In general, at conditions of =1.0 at about 5 

bar and 350 K without residuals, iso-octane’s laminar flame speed is slower than gasoline’s by ~6%, methane’s is 

slower than iso-octane’s by ~10%, whilst butanol’s is very similar to gasoline’s and ~6% greater than ethanol’s. 

At lean conditions of about =1.2, the main hierarchy amongst these fuels holds, but the differences become very 

small to be strictly useful. With regards to turbulent burning velocities, the picture is even less clear, with detailed 

published data on butanol missing (Lawes et al., 2005; Bradley et al., 2011; Sheppard and Lawes, 2009). 

Considering that methane has the lowest laminar burning velocity, but it was found to perform similarly in terms 

of 0–10% MFB to ethanol and butanol whose laminar burning velocities are quite higher, an analysis of the effect 

of charge cooling was undertaken. It was found that close to ignition timing (35–60° CA BTDC) the in-cylinder 

pressure was higher with methane than those of the liquid fuels throughout the range of engine temperatures, 
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despite not adjusting the engine load for methane to account for air displacement. Amongst the liquid fuels there 

was very little difference, however. Specifically, methane’s pressure at ignition timing was ~0.2 bar higher than 

those of the liquid fuels at 90 °C and ~0.1 bar at 20 °C. This translated to ~25 K higher temperature at ignition 

timing for methane which when combined with consistent homogeneous fuelling can account for its observed 

overlapping with the alcohols in terms of the duration of 0–10% MFB. The differences in pressure amongst all 

liquid fuels were typically smaller than ~0.05 bar and in terms of temperature smaller than ~10 K. Given the 

higher latent heat of evaporation of both alcohols relative to iso-octane and gasoline, one might have expected 

ethanol in particular to have exhibited much higher levels of charge cooling overall, hence quite lower 

temperature and pressure at ignition timing in comparison to the hydrocarbons. Analysis of data from evaporation 

modelling and wall heat flux measurements with the exact same liquid fuels by Aleiferis et al. (2011), and from 

charge cooling measurements with various oxygenated blends using a cold wire resistance thermometer by Price 

et al. (2007) in an engine of same nominal geometry to that of the current study, indicated that the higher levels of 

charge cooling during injection with alcohol fuels can result in gradual reduction in the evaporation rate overall 

because the latter can be limited by fuel saturation due to the higher mass injected and/or by diffusion and mixing. 

Specifically, the overall effect of saturation was a temperature difference between gasoline and ethanol at the 

spark-plug location at ignition timing of only ~8 K (Price et al., 2007). Saturation in temperature drop during 

injection has also been measured optically by Beyreau et al. (2006) with iso-octane fuel. 

MIXTURE STRATIFICATION 

Analysis of the combustion performance matrix for the triple-injection strategy in Fig. 10 shows that the hierarchy 

seen amongst fuels in Fig. 8 (when single-injection was employed) has been maintained. However, it interesting 

to note that ethanol and butanol seem to have benefited from this new strategy because the levels of IMEP 

marginally increased, whilst iso-octane and gasoline saw a marginal decrease. In terms of combustion stability 

though, the effect was clearly negative for most conditions, with higher COV levels recorded typically 

throughout. Iso-octane and gasoline were again the worst affected fuels, but ethanol and to some extent butanol 

seem to have benefited especially at the lower temperatures and lower spark advances. This highlights the effect 

of better atomization and mixing for the two alcohols when introduced into the cylinder with split injection 

events. 

In order to study the differences in mixture stratification amongst fuels and injection strategies, the FFID data 

were converted to AFR () according to the molar ratios of the respective stoichiometric chemical equation for 

each fuel. The results in Fig. 11 showed that differences in the gaseous mole fractions between fuels did exist. 

Reference to gaseous mole fraction is important here because it was found that there were some clear signs of a 

‘wetted’ spark-electrode and pent-roof from the injection event, even under firing conditions, especially at 20 °C. 

The presence of liquid fuel was likely to be different for each fuel but this is not measured by the FFID instrument 

because it only responds to fuel vapour in the vicinity of the sampling probe. The results should therefore be 

studied within this context and interpreted accordingly. Differences were seen between the data obtained at the 

spark-plug location and those sampled at the pent-roof wall. The degree of this stratification was generally higher 

for cold engine conditions. At 20 °C, the value of  was in the range 0.96–1.09  at the spark plug location, with 

gasoline exhibiting the largest and iso-octane the lowest value; ethanol and butanol were close to 1.02 and 1.04, 

respectively. Specifically for butanol at 20 °C, the wall region was found to be considerably leaner in vapour 
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concentration than the centre of the chamber, most possibly because of the presence of significant unevaporated 

liquid fuel on the cylinder walls from spray wall impingement; this agrees with the spray impingements study of 

Aleiferis et al. (2011). Ethanol showed the lowest degree of stratification with a difference in  of ~0.08. At 90 

°C, gasoline showed a very similar degree of stratification to that at 20 °C, whilst iso-octane’s degree of 

stratification was lower, i.e. the iso-octane’s concentration field was more homogeneous than at 20 °C. Butanol 

showed an almost perfect =1.0 value at the spark plug location, with a much lower degree of stratification than at 

20 °C as the value of butanol’s  at the wall did not exceed 1.2. Ethanol exhibited a richer mixture than 

stoichiometric at the spark-plug location (=0.96), and this may explain the consistently fast burning behaviour of 

ethanol throughout most testing conditions. 

The FFID results obtained were compared to PLIF measurements carried out by Williams et al. (2008) in an 

identical engine at the same operating conditions. In order for the PLIF measurements of fuel distribution to 

represent those of a real gasoline fuel, a non-fluorescing multi-component ‘model’-fuel comprised of low, 

medium and high boiling point constituents was chosen to co-evaporate with one of three tracers: namely 

Acetone, Toluene and 1,2,4-trimethylbenzene. The model fuel exhibited a volatility curve very similar to the 

gasoline used in the current study. This PLIF fuel was also tested at UCL in a quiescent chamber and its spray 

formation was shown to behave similarly to standard gasoline over the range of pressures and temperatures 

relevant for DISI operation (van Romunde and Aleiferis, 2009). The PLIF results showed that for all early 

injection strategies up to 240° CA ATDC (or 120° CA BTDC), the fuel was found to largely follow the bulk 

tumble motion in the cylinder from a few tens of degrees after the end of injection. Mean and standard deviation 

values of equivalence ratio were evaluated from 32 cycles in the area close to spark plug. These can be compared 

to the values obtained for gasoline using the FFID in the current work. At ignition timing, between 30°–40° 

BTDC, the FFID values of =1.08 obtained by the current authors for gasoline (Fig. 11), were in closest 

agreement to those obtained for Toluene using PLIF, a value of =0.98 at 40° CA BTDC. Cyclic variability in the 

FFID plateau signal levels at the spark-plug had a COV of ~10% compared to ~20% for PLIF values. However, 

the local mixture in-homogeneity was calculated to be ≤10% on a scale above 350 m at ignition, in closer 

agreement with the more robust FFID values, whose absolute uncertainties were very low, demonstrated by 

gaseous methane fuelling which produced a COV of <1% in the FFID signal plateau values. The single shot PLIF 

images also showed evidence of droplets, with a particularly large one appearing in one of the images; this droplet 

was reported to have originated from the injector tip and indeed, it will be shown in later sections of this paper, 

that localised regions of high flame chemiluminescence emanating from directly under the injector were also 

imaged, possibly from trapped fuel inside the outer nozzle section of the injector. The single shot PLIF images 

certainly suggested that the mixture field was significantly heterogeneous even with early injection in the intake 

stroke. In order to check this hypothesis, the triple injection tests were also repeated with a FFID sampling probe 

at the spark-plug. These results are shown in Fig. 12; indeed a triple injection strategy produced marginally leaner 

AFR for both iso-octane and gasoline. 

Previous work with single and triple injection strategies using combustion imaging during the early stages of 

combustion with the ‘standard’ quartz optical showed that the triple injection flames also suggested a leaner fuel 

concentration at the spark plug location at ignition timing than the single injection strategy. Lower luminosity and 

more ‘circular’ flame growth on a macro-scale also resonated with traditional stoichiometric PFI charge 
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preparation combustion systems than DI systems. For triple injection, the absence of a distribution of bright 

localised luminous spots in the flame (seen for single-injection) also suggested minimal diffusion burning 

phenomena and soot production. In the current study, imaging using the full-bore optical piston allowed the 

combustion process to be visualised until the flame reached the cylinder walls. Fig. 13 shows a flame at 28° CA 

After Ignition timing (AIT), i.e. after the typical timing of 25° CA AIT that ‘masking’ effects would have been 

introduced by the ‘standard’ quartz crown (Serras-Pereira et al. 2007, 2008), and two images of combustion 

completion at 80° CA after ignition timing, with single and triple injection strategies (45° CA after compression 

TDC). Those late combustion stages with single injection were clearly observed to produce more diffusion 

burning around the cylinder walls from the ‘out-gassing’ of crevice volumes and likely presence of wall-films 

when compared to triple injection. This is a straight indication of the effect of liquid fuel impingement on the 

cylinder’s liner observed with single injection and it is expected to influence the emissions characteristics of this 

strategy. The levels of late diffusion burning shown for single injection in Fig. 13 were representative of at least 

50% of the imaged cycles, whereas no single imaged cycle ever produced such luminous levels of late burning 

with triple injection over a series of 100 consecutive cycles. The ‘diffusion’ burning regions observed for both the 

single and triple injection strategies in the centre of the chamber, were found to stem from the injector tip and 

similar observations were made with the single-injection strategy employed in the PLIF study of Williams et al. 

(2008). 

 
SUMMARY AND CONCLUSIONS 

The current paper presented results from a detailed study of combustion of gasoline, iso-octane, ethanol and 

butanol fuels in a DISI engine for various engine temperatures. The fuels were injected from a multi-hole injector 

located centrally in the combustion chamber, in close proximity to the spark plug. Methane was also employed by 

injecting it into the inlet plenum of the engine to provide a benchmark case for well-mixed ‘homogeneous’ 

mixture preparation. Several key operating conditions were examined, e.g. stoichiometric (λ=1) and lean (λ=1.2) 

mixtures, spar advances and injection strategies (single and ‘split’ triple per cycle). In-cylinder gas sampling at the 

spark-plug location and at a location on the pent-roof wall was also carried with a fast flame ionisation detector, in 

order to obtain the equivalence ratio and study possible stratification in the mixture field for all liquid fuels. The 

analysis was complemented by imaging the combustion at completion using a full-bore optical piston to study the 

effect of injection strategy on late burning due to ‘pool’ fires on the cylinder walls from spray wall impingement. 

The main conclusions of this study can be summarised as follows: 

 Combustion with single injection strategy was fastest for ethanol throughout the 20–90 °C engine coolant 

temperature range, but butanol and methane flames were just as fast at 90 °C. Iso-octane was the slowest by some 

margin at all temperatures, whilst gasoline flame development fell in between iso-octane and the alcohols. 

However, butanol was more difficult indeed to ignite at cold engine conditions with higher degree of variability 

in IMEP and duration of mass fraction burned in the early stage of combustion 0–10% and 10–90%. Overall, a 

spark advance of 35° CA was a relatively good compromise as the representation of the minimum spark advance 

for best torque across all fuels at engine temperatures 50–90 °C for =1.0. 

 The AFR measurements at the spark-plug and the cylinder walls indicated a certain degree of stratification for 

all fuels. At 20 °C, the value of  was in the range 0.96–1.09 at the spark plug location, with gasoline exhibiting 

the largest and iso-octane the lowest value; ethanol and butanol were close to 1.02 and 1.04, respectively. For 
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butanol the wall region was found to be considerably leaner in vapour concentration than the centre of the 

chamber, most possibly because of the presence of significant unevaporated liquid fuel on the cylinder walls from 

spray wall impingement. Ethanol showed the lowest degree of stratification with a difference in  of ~0.08. At 90 

°C, gasoline showed a very similar degree of stratification to that at 20 °C, whilst iso-octane’s degree of 

stratification was lower (more homogeneous) than at 20 °C. Butanol showed an almost perfect =1.0 value at the 

spark plug location, with a much lower degree of stratification than at 20 °C (the value of  at the wall did not 

exceed 1.2). Ethanol exhibited a richer mixture than stoichiometric at the spark-plug location (=0.96), and this 

may explain the consistently fast burning behaviour of ethanol throughout most testing conditions. 

 The alcohols were more robust to changes in fuelling in comparison to the liquid hydrocarbons. Specifically, 

the early burning period of 0–10% mass fraction burned was typically prolonged by about 5–7° CA for all fuels 

throughout the full range of spark advances, with gasoline and iso-octane affected the most. The levels of IMEP 

dropped by about 35% for most fuels in comparison to =1.0. The COVIMEP increased to levels of beyond 10–

20% for iso-octane at 20–50 °C, but ethanol and butanol did not exceed 8% even at their worst points; gasoline 

performed between iso-octane and both alcohols. Methane maintained the lowest levels of COVIMEP at lean 

conditions. Overall, ignition timing had to be advanced by 10–15° CA for all fuels in order to achieve maximum 

IMEP with minimum COVIMEP. 

 Considering that methane has the lowest laminar burning velocity, but it was found to perform similarly in 

terms of 0–10% MFB to ethanol and butanol whose laminar burning velocities are quite higher, an analysis of the 

effect of charge cooling was undertaken. It was found that close to ignition timing the in-cylinder pressure was 

higher with methane than with the liquid fuels, despite not adjusting the engine load for methane to account for 

air displacement. Amongst the liquid fuels there was very little difference. Specifically, methane’s pressure at 

ignition timing was ~0.2 bar higher than those of the liquid fuels at 90 °C and ~0.1 bar at 20 °C. This translated to 

~25 K higher temperature at ignition timing for methane which when combined with consistent homogeneous 

fuelling could account for its similarity to the behaviour of alcohols in terms of the duration of 0–10% mass 

fraction burned. The differences in pressure amongst all liquid fuels were typically smaller than ~0.05 bar and in 

terms of temperature smaller than ~10 K. 

 Triple injection had a small but noticeable impact on the combustion performance of the different fuels with 

=1.0. IMEP marginally increased for the alcohols and marginally decreased for iso-octane and gasoline. The 

effect on combustion stability though was clearly negative for most conditions, with higher COV typically 

recorded throughout. Iso-octane and gasoline were again the worst affected fuels, but ethanol and to some extent 

butanol benefited, especially at the lower temperatures and lower spark advances. This highlights the effect of 

better atomization and mixing for the two alcohols when introduced into the cylinder with split injection events. 

Triple injection produced less stratification in mixture concentration, with a generally leaner mixture at the spark 

plug than single injection.  

 Images of combustion completion with single and triple-injection strategies showed much less luminous late 

burning for the triple-injection strategy, typically synonymous with lower levels of soot production.  
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Current work is focused on analysis of in-cylinder flame images with all fuels in order to derive rates of flame 

kernel growth and motion. Linking those to carefully categorised laminar and turbulent burning velocities, as well 

as to traditional combustion diagrams, will provide further insights into the effects observed in the present paper. 
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Table 1. Research Engine Specifications. 

Engine Base Type Prototype Head 

Cycle 4-Stroke 

Cylinders 1 

Valves 2 Intake, 2 Exhaust 

Bore 89.0 mm 

Stroke 90.3 mm 

Compression Ratio 11.15:1 

Valve Timings IVO 24°, IVC 274°, EVO 476°, EVC 6° 
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Table 2. Fuel Properties (a). 

Properties Ethanol Butanol Gasoline iso-Octane 

Chemical formula C2H5OH C4H9OH 
C6.75H12.99 
(C4–C12) 

C8H18 

Molar mass [g/mol]  46.07 74.12 100–105 114.3 

Density [g/cm3] 0.79 0.81 0.72 0.69 

Solubility in water (20 °C) [g/l] miscible 79 partially 5.610-4 

Boiling point [°C] 78.3 117.8 
~55–145 
(10–90%)  

99 

Flash point [°C] 12 30 -43 -12 

Autoignition temperature [°C] 425 340 >350 410 

Reid vapour pressure [kPa] 16.1 (b) 2.2 (b) 56 11.8 (b) 

Dynamic viscosity (20 °C) [cP] 1.2 2.95 0.37–0.44 (c) 0.51 

Dynamic viscosity (80 °C) [cP] 0.43 (e) 0.73 (e) – 0.27 (e) 

Kinematic viscosity (25 °C) [cSt] 1.34 (e) 3.22 (e) 0.5–0.58 0.67 (e) 

Kinematic viscosity (80 °C) [cSt] 0.59 (e) 0.96 (e) – 0.42 (e) 

Surface tension (20 °C) [mN/m] 24.05 (e) 26.3 (e) ~20 18.3 (e) 

Surface tension (80 °C) [mN/m] 16.4 (e) 19.3 (e) – 13.6 (e) 

Explosion limit (upper) [Vol%] 15 11.3 7.6 6 

Explosion limit (lower) [Vol%] 3.5 1.4 1.4 1 

Latent heat (Tboil) [kJ/kg] 855 (e) 584 (e) 364 272 (e) 

Latent heat (25 °C) [kJ/kg] 874 (e) 669 (e) 380–500 300 (e) 

Stoichiometric AFR 9 11.1 14.6 15.1 

Heating value [MJ/kg], [MJ/lt] 26.9, 21.3 (e) 33.9, 27.5 (e) 42.7, 32 (c) 44.6, 30.8 (e) 

Specific energy [MJ/kg air] 2.99 3.01 2.92 2.94 

RON 129 (f) 96 (f) 95 100 

H/C 3 2.5 1.92 2.25 

O/C 0.5 0.25 0 0 

 
(a) If not specified differently, data taken from fuel product sheets; Scharlab (2011a–c), Shell Global Solutions 
(UK) (2005); (b) Poling et al. (2001); (c) Owen and Coley (1995); (d) Perry and Green (1997); (e) Yaws (2003); 
(f) Gupta and Demirbas (2010). 
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Table 3. Fuel Pulsewidths Used for all Fuels and Injection Strategies. 

 Engine Mapping Fuel Pulse Durations [ms] 

 = AFR/AFRstoich 1.0 1.2 

Injection Strategy Single Triple Single 

iso-Octane 0.90 0.3, 0.3, 0.35 0.74 

Gasoline 0.90 0.3, 0.3, 0.35 0.74 

Ethanol 1.38 0.3, 0.4, 0.62 1.14 

Butanol 1.10–1.16 0.3, 0.4, 0.45 0.91–0.96 

Methane 3.90 – 3.10 

 

 

 

 

Table 4. FFID System Configuration for In-Cylinder Sampling. 

SPECIFICATIONS In-Cylinder FFID 

P [mm Hg] 55 

Fuel Flow [bar] 2.2 

Air Flow [bar] 5.1 

Calibration Gas Methane 

C1 Stoichiometry [ppm] 95,057 

Sample Probe Length [mm] 330 

Sample Probe diameter [inches] 0.008" 

Sample Probe Locations  Spark Plug & Pent-Roof Wall 

CP chamber  Open to Atmosphere 
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