735 research outputs found

    Lewy bodies and neuronal loss in subcortical areas and disability in non-demented older people: a population based neuropathological cohort study.

    Get PDF
    BACKGROUND: Functional disability, the loss of ability to carry out daily tasks unaided, is a major adverse outcome more common with increasing age. The potential contribution of neuropathological changes in subcortical areas of the brain associated with normal ageing may be a contributing factor to this loss of function. This study investigates the clinicopathological relationship between functional ability during life and pathological correlates identified at post mortem in an UK population of older people (66-102 years).The aim is to examine the clinicopathological correlates of functional disability in subcortical neuronal populations of non-demented elderly individuals. METHODS: 156 non-demented participants in the brain donation programme of the Medical Research Council Cognitive Function and Ageing Study (MRC-CFAS) were included in this study. Neuropathological examination was based on the CERAD protocol; pathologies of interest were amyloid plaques, neurofibrillary tangles, Lewy bodies, vascular disease and neuronal loss. Self-reported functional ability was scored according to a combined activities of daily living and instrumental activities of daily living scale. RESULTS: Functional disability was equally common in men and women over 65 years, and in both sexes disability was more common at older ages. Neuronal loss in several subcortical regions elevated the risk of functional disability by three-fold (95% CI 1.3-6.6). There was evidence for a relationship between Lewy bodies in the SN and functional disability. CONCLUSION: Neuronal loss in subcortical regions is associated with functional disability in the older population. The causal relationships are not defined and require further investigation

    Heterogeneity in Regional Damage Detected by Neuroimaging and Neuropathological Studies in Older Adults With COVID-19: A Cognitive-Neuroscience Systematic Review to Inform the Long-Term Impact of the Virus on Neurocognitive Trajectories

    Get PDF
    Copyright © 2021 Manca, De Marco, Ince and Venneri. Background: Other than its direct impact on cardiopulmonary health, Coronavirus Disease 2019 (COVID-19) infection affects additional body systems, especially in older adults. Several studies have reported acute neurological symptoms that present at onset or develop during hospitalisation, with associated neural injuries. Whilst the acute neurological phase is widely documented, the long-term consequences of COVID-19 infection on neurocognitive functioning remain unknown. Although an evidence-based framework describing the disease chronic phase is premature, it is important to lay the foundations for future data-driven models. This systematic review aimed at summarising the literature on neuroimaging and neuropathological findings in older over-60 patients with COVID-19 following a cognitive neuroscientific perspective, to clarify the most vulnerable brain areas and speculate on the possible cognitive consequences. Methods: PubMed and Web of Science databases were searched to identify relevant manuscripts published between 1st March 2020 and 31th December 2020. Outputs were screened and selected by two assessors. Relevant studies not detected by literature search were added manually. Results: Ninety studies, mainly single cases and case series, were included. Several neuroimaging and neuropathological findings in older patients with COVID-19 emerged from these studies, with cerebrovascular damage having a prominent role. Abnormalities (hyperintensities, hypoperfusion, inflammation, and cellular damage) were reported in most brain areas. The most consistent cross-aetiology findings were in white matter, brainstem and fronto-temporal areas. Viral DNA was detected mainly in olfactory, orbitofrontal and brainstem areas. Conclusion: Studies on COVID-19 related neural damage are rich and diverse, but limited to description of hospitalised patients with fatal outcome (i.e., in neuropathological studies) or severe symptoms (i.e., in neuroimaging studies). The damage seen in this population indicates acute and largely irreversible dysfunction to neural regions involved in major functional networks that support normal cognitive and behavioural functioning. It is still unknown whether the long-term impact of the virus will be limited to chronic evolution of acute events, whether sub-clinical pathological processes will be exacerbated or whether novel mechanisms will emerge. Based on current literature, future theoretical frameworks describing the long-term impact of COVID-19 infection on mental abilities will have to factor in major trends of aetiological and topographic heterogeneity.MRC/UKRI: grant: MR/V03605X/1 COVID-19 Clinical Neuroscience Study (COVID-CNS

    Microinfarcts in an older population-representative brain donor cohort (MRC CFAS): Prevalence, relation to dementia and mobility, and implications for the evaluation of cerebral Small Vessel Disease.

    Get PDF
    INTRODUCTION: Microinfarcts, small ischaemic foci common in ageing brain, are associated with dementia and gait dysfunction. We determined their relationship with dementia, mobility and cerebrovascular disease in an older population-representative brain donor cohort. These data on microinfarcts were evaluated in relation to pathological assessments of clinically significant cerebral small vessel disease (SVD). METHODS: Microinfarcts were assessed in the MRC Cognitive Function and Ageing Study (n = 331). Nine brain areas were staged according to the number of areas affected. RESULTS: 36% of brains showed at least 1 microinfarct. Higher cortical microinfarct stage was associated with dementia at death (OR 1.41, 95% CI 1.02; 1.96, P = 0.038), whilst cortical and subcortical microinfarct stages were associated with impaired mobility (OR 1.36, 95% CI 1.05-1.74; P 0.018) and falls (OR 1.96, 95% CI 1.11-3.43; P = 0.02). Adding data on microinfarcts to a definition of SVD, based on white matter lesions (WMLs), lacunes and significant arteriosclerosis, were assessed by comparing area under ROC curve (AUC) with and without microinfarcts. SVD was significantly related to dementia status with or without inclusion of microinfarcts. Modelling potential pathological definitions of SVD to predict dementia or impaired mobility indicated optimal prediction using combined assessment of WMLs, lacunes and microinfarcts. CONCLUSION: Cortical (dementia) and subcortical microinfarcts (impaired mobility) are related to diverse clinical outcomes. Optimal pathological assessment of significant SVD in brain ageing is achieved based on WMLs, lacunes and microinfarcts and may not require subjective assessment of the extent and severity of arteriosclerosis

    TREM2 Expression in the Human Brain: A Marker of Monocyte Recruitment

    Get PDF
    Abstract Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer’s disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has therefore been assumed that this is also the case in humans. However, there is very limited information concerning the cellular expression of TREM2 in the human brain. As part of investigations of microglia using post-mortem resources provided by the Medical Research Council Cognitive Function and Ageing Studies (MRC-CFAS), we immunostained the cerebral cortex of 299 participants for TREM2 using the Sigma antibody HPA010917 and compared with the macrophage/microglial markers Iba1 and CD68. As expected, Iba1 and CD68 labelled microglia and perivascular macrophages. However, in most cases (284/299), the TREM2 antibody labelled monocytes within vascular lumens, but not microglia or perivascular macrophages. In contrast, in 5 out of 6 cases with acute infarcts, TREM2 immunoreaction identified cells within the brain parenchyma interpreted as recruited monocytes. Six cases with old infarcts contained phagocytic foamy macrophages which were CD68-positive but TREM2 negative. Our observations, using the HPA010917 anti-TREM2 antibody, suggest that TREM2 is not expressed by microglia but instead seems to be a marker of recruited monocytes in the human brain. This finding has implications with regards to the role of TREM2 as a risk factor, emphasizing the importance of systemic immune responses in the development and progression of Alzheimer’s disease.The study was supported in part by: a Special Project grant and a Programme grant from the MRC and the Department of Health; the UK NIHR Biomedical Research Centre for Ageing and Age—related Disease Award to the Newcastle-upon-Tyne Hospitals Foundation Trust; the Cambridge Brain Bank is supported by the NIHR Cambridge Biomedical Research Centre; The Cambridgeshire and Peterborough NIHR CLAHRC; Nottingham University Hospitals NHS Trust; University of Sheffield and the Sheffield Teaching Hospitals NHS Foundation Trust; The Thomas Willis Oxford Brain Collection, supported by the Oxford Biomedical Research Centre; The Walton Centre NHS Foundation Trust, Liverpool

    Epidemiological pathology of Aβ deposition in the ageing brain in CFAS: addition of multiple Aβ-derived measures does not improve dementia assessment using logistic regression and machine learning approaches

    Get PDF
    Abstract: Aβ-amyloid deposition is a key feature of Alzheimer’s disease, but Consortium to Establish a Registry for Alzheimer's Disease (CERAD) assessment, based on neuritic plaque density, shows a limited relationships to dementia. Thal phase is based on a neuroanatomical hierarchy of Aβ-deposition, and in combination with Braak neurofibrillary tangle staging also allows derivation of primary age-related tauopathy (PART). We sought to determine whether Thal Aβ phase predicts dementia better than CERAD in a population-representative cohort (n = 186) derived from the Cognitive Function and Ageing Study (CFAS). Cerebral amyloid angiopathy (CAA) was quantitied as the number of neuroanatomical areas involved and cases meeting criteria for PART were defined to determine if they are a distinct pathological group within the ageing population. Agreement with the Thal scheme was excellent. In univariate analysis Thal phase performed less well as a predictor of dementia than CERAD, Braak or CAA. Logistic regression, decision tree and linear discriminant analysis were performed for multivariable analysis, with similar results. Thal phase did not provide a better explanation of dementia than CERAD, and there was no additional benefit to including more than one assessment of Aβ in the model. Number of areas involved by CAA was highly correlated with assessment based on a severity score (p < 0.001). The presence of capillary involvement (CAA type I) was associated with higher Thal phase and Braak stage (p < 0.001). CAA was not associated with microinfarcts (p = 0.1). Cases satisfying pathological criteria for PART were present at a frequency of 10.2% but were not older and did not have a higher likelihood of dementia than a comparison group of individuals with similar Braak stage but with more Aβ. They also did not have higher hippocampal-tau stage, although PART was weakly associated with increased presence of thorn-shaped astrocytes (p = 0.048), suggesting common age-related mechanisms. Thal phase is highly applicable in a population-representative setting and allows definition of pathological subgroups, such as PART. Thal phase, plaque density, and extent and type of CAA measure different aspects of Aβ pathology, but addition of more than one Aβ measure does not improve dementia prediction, probably because these variables are highly correlated. Machine learning predictions reveal the importance of combining neuropathological measurements for the assessment of dementia

    Tracing the Flow of Perceptual Features in an Algorithmic Brain Network

    Get PDF
    The model of the brain as an information processing machine is a profound hypothesis in which neuroscience, psychology and theory of computation are now deeply rooted. Modern neuroscience aims to model the brain as a network of densely interconnected functional nodes. However, to model the dynamic information processing mechanisms of perception and cognition, it is imperative to understand brain networks at an algorithmic level–i.e. as the information flow that network nodes code and communicate. Here, using innovative methods (Directed Feature Information), we reconstructed examples of possible algorithmic brain networks that code and communicate the specific features underlying two distinct perceptions of the same ambiguous picture. In each observer, we identified a network architecture comprising one occipito-temporal hub where the features underlying both perceptual decisions dynamically converge. Our focus on detailed information flow represents an important step towards a new brain algorithmics to model the mechanisms of perception and cognition

    Association of Delirium With Cognitive Decline in Late Life: A Neuropathologic Study of 3 Population-Based Cohort Studies

    Get PDF
    Importance: Delirium is associated with accelerated cognitive decline. The pathologic substrates of this association are not yet known, that is, whether they are the same as those associated with dementia, are independent, or are interrelated. Objective: To examine whether the accelerated cognitive decline observed after delirium is independent of the pathologic processes of classic dementia. Design, Setting, and Participants: Harmonized data from 987 individual brain donors from 3 observational cohort studies with population-based sampling (Vantaa 85+, Cambridge City Over-75s Cohort, Cognitive Function and Ageing Study) performed from January 1, 1985, through December 31, 2011, with a median follow-up of 5.2 years until death, were used in this study. Neuropathologic assessments were performed with investigators masked to clinical data. Data analysis was performed from January 1, 2012, through December 31, 2013. Clinical characteristics of brain donors were not different from the rest of the cohort. Outcome ascertainment was complete given that the participants were brain donors. Exposures: Delirium (never vs ever) and pathologic burden of neurofibrillary tangles, amyloid plaques, vascular lesions, and Lewy bodies. Effects modeled using random-effects linear regression and interactions between delirium and pathologic burden were assessed. Outcomes: Change in Mini-Mental State Examination (MMSE) scores during the 6 years before death. Results: There were 987 participants (290 from Vantaa 85+, 241 from the Cambridge City Over-75s Cohort, and 456 from the Cognitive Function and Ageing Study) with neuropathologic data; mean (SD) age at death was 90 (6.4) years, including 682 women (69%). The mean MMSE score 6 years before death was 24.7 points. The 279 individuals with delirium (75% women) had worse initial scores (−2.8 points; 95% CI, −4.5 to −1.0; P < .001). Cognitive decline attributable to delirium was −0.37 MMSE points per year (95% CI, −0.60 to −0.13; P < .001). Decline attributable to the pathologic processes of dementia was −0.39 MMSE points per year (95% CI, −0.57 to −0.22; P < .001). However, the combination of delirium and the pathologic processes of dementia resulted in the greatest decline, in which the interaction contributed an additional −0.16 MMSE points per year (95% CI, −0.29 to −0.03; P = .01). The multiplicative nature of these variables resulted in individuals with delirium and the pathologic processes of dementia declining 0.72 MMSE points per year faster than age-, sex-, and educational level–matched controls. Conclusions and Relevance: Delirium in the presence of the pathologic processes of dementia is associated with accelerated cognitive decline beyond that expected for delirium or the pathologic process itself. These findings suggest that additional unmeasured pathologic processes specifically relate to delirium. Age-related cognitive decline has many contributors, and these findings at the population level support a role for delirium acting independently and multiplicatively to the pathologic processes of classic dementia

    Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance

    Get PDF
    In Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) α-synuclein (αS) pathology is seen that displays a predictable topographic distribution. There are two staging/categorization systems, i.e. Braak’s and McKeith’s, currently in use for the assessment of αS pathology. The aim of these diagnostic strategies in pathology is, in addition to assess the stage/severity of pathology, to assess the probabilities of the related clinical symptomatology i.e. dementia and extrapyramidal symptoms (EPS). Herein, we assessed the applicability of these two staging/categorization systems and the frequency of dementia and EPS in a cohort of 226 αS-positive-subjects. These subject were selected from a large autopsy sample (n = 1,720), irrespective of the clinical presentation, based on the detection of αS-immunoreactivity (IR) in one of the most vulnerable nuclei; in the dorsal motor nucleus of vagus, substantia nigra and basal forebrain. The frequency of αS-IR lesions in this large cohort was 14% (248 out of 1,720). If applicable, each of the 226 subjects with all required material available was assigned a neuropathological stage/category of PD/DLB and finally the neuropathological data was analyzed in relation to dementia and EPS. 83% of subjects showed a distribution pattern of αS-IR that was compatible with the current staging/categorization systems. Around 55% of subjects with widespread αS pathology (Braak’s PD stages 5–6) lacked clinical signs of dementia or EPS. Similarly, in respect to those subjects that fulfilled the McKeith criteria for diffuse neocortical category and displaying only mild concomitant Alzheimer’s disease-related pathology, only 48% were demented and 54% displayed EPS. It is noteworthy that some subjects (17%) deviated from the suggested caudo-rostral propagation suggesting alternative routes of progression, perhaps due to concomitant diseases and genetic predisposition. In conclusion, our results do indeed confirm that current staging/categorization systems can readily be applied to most of the subjects with αS pathology. However, finding that around half of the subjects with abundant αS pathology remain neurologically intact is intriguing and raises the question whether we do assess the actual disease process
    • …
    corecore