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Abstract Decompositions of linear ordinary differential equations (ode’s) into com-
ponents of lower order have successfully been employed for determining their
solutions. Here this approach is generalized to nonlinear ode’s. It is not based on
the existence of Lie symmetries, in that it is a genuine extension of the usual solution
algorithms. If an equation allows a Lie symmetry, the proposed decompositions are
usually more efficient and often lead to simpler expressions for the solution. For the
vast majority of equations without a Lie symmetry decomposition is the only avail-
able systematic solution procedure. Criteria for the existence of diverse decomposition
types and algorithms for applying them are discussed in detail and many examples are
given. The collection of Kamke of solved equations, and a tremendeous compilation of
random equations are applied as a benchmark test for comparison of various solution
procedures. Extensions of these proceedings for more general types of ode’s and also
partial differential equations are suggested.
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576 F. Schwarz

1 Introduction: description of the problem

Ever since its introduction more than 300years ago the concept of a differential equa-
tion, and connected to it finding its solutions, has been a fundamental problem in
mathematics and its applications in natural sciences. Despite intensive efforts over the
centuries there are numerous open problems. In this article ordinary differential equa-
tions (ode’s) will be discussed, i.e. equations containing a single unknown function
depending on a single variable.

There are various notions of a solution of a differential equation. On the one hand,
there are numerical and graphical solutions; their main advantage is that almost always
they may be determined; they are not considered here. On the other hand, there are
so-called exact or closed form solutions, a detailed discussion of this concept may be
found in [1]. Thereby the goal is to obtainfinite expressions in termsof known functions
like elementary, Liouvillian or special functions that annihilate the given differential
equation upon substitution; they exist only in exceptional cases. The general solution
of an equation of order n contains n undetermined constants; special solutions contain
less than n constants, or no constants at all. Furthermore, there may be first integrals;
for an equation of order n, a first integral is a relation containing derivatives of order
lower than n. In addition there may be singular integrals that may not be obtained by
specialization of the constants; they are not considered in this article. As a prerequisite,
general introductions into the theory of ordinary differential equations may be found
e.g. in the books by Ince [9], Kamke [12] and Forsyth [6,7], or more recent books by
Coddington [2] or Wirkus and Swift [21].

A complete solution scheme must allow to prove the existence or non-existence
of a particular type of solution. In the former case, it should be possible to design
an algorithm that returns this solution explicitly. If none is returned this should be
equivalent to the proof that such a solution does not exist. Finally, if such an algorithm
cannot be found, a complete answer should provide a proof that the existence of certain
types of solutions is undecidable. For general differential equations this goal is out of
reach at present. Only for linear equations a fairly detailed solution scheme along these
lines is available [20]. It is based on the decomposition of the differential operator that
is associated with the differential equation.

For nonlinear equations the most important solution procedure right now is based
on Lie’s symmetry analysis; in Appendix E of [18] it has been shown that almost
all solutions of non-linear second order equations listed in Kamke’s collection [12]
are based on the existence of nontrivial Lie symmetries. Yet the situation is not com-
pletely satisfactory. Drach [3] has described this situation as follows: “Lie’s théorie
des groupes à l’intégration des équations n’est pas la véritable généralization de la
méthode employée par Galois pour les équations algébriques”.1 This judgement is
based on the following observation. There are equations with a large group of Lie sym-
metries that may not be utilized for solving it as may be seen in several examples given
below. On the other hand, there are equations without any Lie symmetry that have a
fairly simple closed-form solution. Consequently, a theory for solving ode’s based

1 Translation by the author: “...Lie’s group theory for the integration of equations is not the true general-
ization of the method applied by Galois for algebraic equations”.
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Decomposition of ordinary differential equations 577

on Lie’s symmetry analysis will not be able to design a complete solution scheme as
described above.

This situation suggests trying a different approach based on factorization and
decomposition as it has been applied successfully to linear equations. In this arti-
cle this project will be performed in full detail for quasilinear equations of second
order. On the one hand, equations of this type occur in numerous applications, and
they are special enough such that a fairly complete treatement of the subject may be
given. On the other hand, the scope is sufficiently general such that the applied meth-
ods may serve as a guideline for equations not linear in the highest derivative or of
higher order.

In Sect. 2 second-order equations that are of first degree in the second derivative,
polynomial of any degree in the first derivative, and rational in the dependent and
the independent variable are discussed in detail. It is shown there how to determine
first-order components of various types and how they faciliate the solution procedure.
In Sect. 3 it is shown that the existence of a first-order component of a particular
type is not limited to an individual equation but applies to the full equivalence class
of the structure invariance group of the respective component. Section 4 deals with
the computational problems that have to be solved in order to determine particular
decompositions; furthermore the relation between solution procedures based on Lie
symmetries versus decompositions are discussed. In the final Sect. 5 the extension of
the methods described in this article to more general classes of ordinary and partial
differential equations is discussed and several examples are given.

2 Decomposing quasilinear equations of second order

The general solution of a second-order ode depends on two independent constants C1
and C2, it generates a two-parameter family of plane curves ω(x, y,C1,C2) = 0. For
linear equations this may be written as y = C1ϕ1(x) + C2ϕ2(x) where ϕ1, ϕ2 are a
fundamental system; the function field containing these basis elements is determined
by the Galois group corresponding to the differential equation, details may be found
in the book by Magid [15].

For nonlinear equations Lie’s symmetry analysis is based on the following obser-
vation; for details see Kapitel 16 and 17 in [13]. It may occur that a transformation
of x and y just interchanges the members of the family, i.e. the above expres-
sion is transformed into ω(x, y, C̄1, C̄2) = 0 where the new constants C̄1 and
C̄2 are functions of C1 and C2. Because ω is not changed by this operation, the
same is true for the corresponding differential equation; Lie calls a transforma-
tion with this property a symmetry. A simple example is the family of parabolas
y = C2

1 x
2 + C1C2x + C2

2 . The two-parameter group of transformations x = ax̄ ,

y = bȳ changes it into ȳ = C2
1
a2
b x̄2 + C1C2

a
b x̄ + 1

bC
2
2 . Defining C̄1 ≡ a√

b
C1

and C̄2 ≡ 1√
b
C2, the family of parabolas has the form ȳ = C̄1

2
x̄2 + C̄1C̄2 x̄ + C̄2

2
.

The relation between x̄ and ȳ is the same as between x and y with new constants C̄1
and C̄2, i.e. the members of the two-parameter family of parabolas are swapped by
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578 F. Schwarz

the transformations of the group. Consequently both obey the same second-order ode
y′′2 − 2

x y
′y′′ − 2

x2
yy′′ + 4

3x2
y′2 = 0, or the same equation with the barred vari-

ables. Obviously this approach is suggested by Galois’ method for solving algebraic
equations.

In the above mentioned reference Lie describes in detail how a symmetry may be
utilized for solving differential equations of any order. The main limitation of this
proceeding is the fact that symmetries are extremely rare, and even the existence of a
symmetry is no guarantee that the equation may be solved; details will be given below
in Sect. 4.2.

The following reasoning appears to be more natural, it applies to any differential
equation. If the parameters in ω(x, y,C1,C2) = 0 are constrained by a relation
ϕ(C1,C2) = 0, the resulting expression contains effectively a single constant C ;
it may satisfy a first order ode which is a component of the original second-order
equation. Obviously there are infinitely many of them corresponding to the choice of
ϕ. If F(x, y, y′, y′′) = 0 is a second-order equation, a decomposition may have the
form

F(x, y, y′, y′′) =
{
f (x, z, z′)

(
z ≡ g(x, y, y′)

)
f (x, z, z′,C)

(
z ≡ g(x, y, y′,C)

) (1)

This notation is applied througout this article. It means that substituting the expression
z ≡ g into f yields the given second-order ode F ; g is called a right component of F .
Consequently, any solution of g = 0 is a solution of F = 0. If g contains a constant
C and may be integrated, the general solution of F = 0 may be obtained in this way.
If g does not contain a constant and f does not contain y explicitly it may be possible
to proceed with the solution procedure by solving g = z1 where z1 is a solution of
f = 0; this resembles the case of solving a linear ode by decomposition, details are
given in Chapters 4 and 5 of Schwarz [20]. If f does contain the dependent variable y
this leads to an integro-differential equation; in this case only the right component
may be applied for the solution procedure; it may allow determining special solutions.
The existence of first-order components is based on the following lemma.

Lemma 1 Let the given second-order equation be y′′ + R(x, y, y′) = 0 where R ∈
Q(x, y)[y′]. A first-order component y′ + r(x, y) = 0 exists if r is a solution of

rx − rry − R(x, y,−r) = 0; (2)

its general solution contains an undetermined function of x and y.

Proof Reduction of the given second-order equation w.r.t. y′ + r = 0 and y′′ +
rx − rry = 0 yields the above constraint. According to Kamke [11], Sects. 5.1 and
5.4, (2) may be transformed into a linear partial differential equation wx − rwy +
R(x, y,−r)wr = 0 for a function w(x, y, r). If ϕ1(x, y, r) and ϕ2(x, y, r) is an
integral basis, its general solution is �(ϕ1, ϕ2) where � is an undetermined function
of its two arguments. �

Equation (2) is called the determining equation for the component y′+r(x, y) = 0.
The undetermined function � in its general solution corresponds to the function ϕ

mentioned at the beginning of this section.
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Decomposition of ordinary differential equations 579

In order to obtain an algorithmic procedure for determining a first-order component
the given second-order equation has to be suitably specified; a polynomial in y′ with
rational coefficients in x and y, i.e. R ∈ Q(x, y)[y′] will be chosen.

The subsequent proposition is the basis for generating quasilinear first-order com-

ponents; throughout this article y′ ≡ dy
dx and D ≡ d

dx .

Proposition 1 Let a quasilinear second-order differential equation

y′′ +
K∑

k=0

ck(x, y)y
′k = 0 with ck ∈ Q(x, y), K ∈ N (3)

be given. A first-order component y′ + r(x, y) = 0 exists if r(x, y) satisfies

rx − rry −
K∑

k=0

(−1)kckr
k = 0. (4)

Then the original second-order equation may be written as

(
z′ − ryz +

K∑
k=1

ck
(
(z − r)k + (−1)k+1rk

)) (
z ≡ y′ + r

) = 0. (5)

Proof The constraint (4) follows immediately from the preceding lemma. The term
z′ − ryz in (5) originates from the second derivative in (3). The sums in (4) and in the
first bracket of (5) originate from the algebraic quotient of the sum in (3) by y′ + r ,
its existence is assured if condition (4) is satisfied. ��

When the coefficients ck are given, (4) is a first-order partial differential equation
for r(x, y). In general its solution cannot be obtained in closed form without further
specification. Because themain objective is finding explicit solutions, components that
may lead to solvable first-order equations are of particular interest. A rather lcomplete
discussion of solvable first-order equations is given in Kamke [10], §1, Sect. 4. They
are the basis for the decomposition procedures described in this section.

Depending on the decomposition type the computational problem for determining
r(x, y) is different. In any case, there will be a system of equations for the coefficients
that occur in the component, it will called the determining system. It may be an algebro-
differential system, an algebraic system or a system of first-order ordinary differential
equations.

2.1 Linear components

As a first case, linear first-order right components of the form z ≡ y′ + a(x)y + b(x)
are searched for; with the above notation r(x, y) = a(x)y + b(x). The following
proposition describes how they may be obtained.
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580 F. Schwarz

Proposition 2 Let a second-order quasilinear equation (3) be given. In order that it
has a linear first-order component z ≡ y′ + a(x)y + b(x) the coefficients a(x) and
b(x) have to be a solution of

(a′ − a2)y + b′ − ab −
K∑

k=0

(−1)kck(ay + b)k = 0. (6)

Then (3) may be written as follows.

(
z′ − az +

K∑
k=1

ck
(
(z − ay − b)k − (−ay − b)k

)) (
z ≡ y′ + ay + b

) = 0. (7)

The coefficients a and b may be obtained from a first-order algebro-differential system;
its degree in a and b is bounded by K except for K = 1 where the degree in a is 2.
For low values of K Eqs. (6) and (7) are explicitly given as follows.

K = 1 :
{

(a′ − a2)y + b′ − ab + c1(ay + b) − c0 = 0,
(z′ − az + c1z)(z ≡ y′ + ay + b) = 0;

K = 2 :
{

(a′ − a2)y + b′ − ab − c2(ay + b)2 + c1(ay + b) − c0 = 0,(
z′ − az + c2z2 − 2c2(ay + b)z + c1z

)
(z ≡ y′ + ay + b) = 0;

K = 3 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a′ − a2)y + b′ − ab + c3(ay + b)3 − c2(ay + b)2 + c1(ay + b)
−c0 = 0,(
z′ − az + c3z3 − 3c3(ay + b)z2 + c2z2 + 3c3(ay + b)2z

−2c2(ay + b)z + c1z
)

(z ≡ y′ + ay + b) = 0.

(8)

Proof Substituting r = a(x)y+b(x) into (4) yields (6). Decomposing it w.r.t. powers
of the undetermined variable y yields sufficient conditions for the vanishing of (6).
They form an algebro-differential system for a and b; the first order in a and b is
obvious from (6). The minimal second degree of a arises from the coefficient of y in
(6); the powers of a and b originate from the sum with highest power K . Substitution
of y′ = z − ay − b into (5) yields (7). As a result, the sums at the left-hand side of (7)
are a polynomial in z the coefficients of which may depend explicitly on y. ��

The solutions for a and b determine the decomposition and finally the solutions of
the originally given second-order equation. Subsequently these results will be illus-
trated by several examples. They are compared with the possible outcome of Lie’s
symmetry analysis whenever there is any symmetry.

Example 1 The equation

(y − x)y′′ + yy′ + xy − x = 0 (9)

with K = 1 and coefficients c1 = y
y − x , c0 = x(y − 1)

y − x has the determining system

a′ − a2 + a = 0, (a′ − a2 + 1)x − b′ + ab − b = 0, and b′ − ab − 1 = 0.
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Decomposition of ordinary differential equations 581

Its general solution is

a = C

ex + C
, b = xex

ex + C
− 1;

C is an undetermined constant. It leads to the decomposition

(
z′ − yex + Cx

(x − y)(ex + C)
z

) (
z ≡ y′ + C

ex + C
y + xex

ex + C
− 1

)
= 0.

Integrating the first-order component the general solution

y = (
1 + C1e

−x) (
C2
1

∫
dx

(C1 + ex )2
− log

(
C1 + ex

) − 1

2
x2 + C2

)
+ 2x

of (9) follows; this equation does not have any Lie symmetry. ��
Example 2 For the equation

y′′ −
(
1 + 2

y

)
y′2 + 1

x
(3y + 4)y′ − 2

x2
y(y + 1) = 0 (10)

K = 2, its coefficients are c2 = −
(
1 + 2

y

)
, c1 = 1

x (3y+4) and c0 = − 2
x2

y(y+1),

the determining system is

a′ + a2 + 4

x
a + 2

x2
= 0, a2 + 3

x
a + 2

x2
= 0 and b = 0.

The two solutions a = −1
x and a = −2

x yield the decompositions

(
D − (

1 + 2
y
)
y′ + 1

x (2y + 3)
) (

y′ − 1
x y

)
,

(
D − (

1 + 2
y
)
y′ + 1

x (y + 2)
) (

y′ − 2
x y

)
.

They lead to the special solutions y1 = C1x and y2 = C2x2 of (10), its extension
to the general solution is not provided by them. The single Lie symmetry generator
x∂x leads to a complicated transformation to canonical form from which the general
solution cannot be obtained. ��
Example 3 The equation

y′′ − 1

x2
y′2 − 2xy′ + 4

x
yy′ − 1

x
y′ − 4y2 = 0 (11)

with K = 2 has the coefficients c2 = 1
x2

, c1 = −2x + 4
x y− 1

x and c0 = −4y2. They

lead to the system
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582 F. Schwarz

a′ − a2 −
(
2x + 1

x

)
a = 0, (a + 2x)2 = 0 and

b′ + 1

x2
b2 −

(
2x + 1

x

)
b − ab = 0

for a and b. It yields the inhomogeneous component y′ − 2xy − x
log(x + C)

= 0

from which the general solution

y = exp (x2)

(∫
x exp(−x2)dx

log (x) + C1
+ C2

)

of (11) follows. This equation has a one-parameter group of Lie symmetries with gen-
erator exp (x2)∂y that yields the same answer. However, the solution by decomposition
is much more efficient. ��
Example 4 The equation

yy′′ − y′2 + 2

3
y′ − 1

x
y2 = 0 (12)

with K = 2 has the coefficients c2 = −1
y , c1 = 2

3y and c0 = − y
x ; they generate the

system

a′ + 1

x
= 0, b′ + ab + 2

3
a = 0, b2 + 2

3
b = 0

with solution a = − log (x) + C , b = −2
3 from which the decomposition

(
z′ − 1

y
z2 − 1

y

(
log (x)y − Cy + 2

2

)
z

) (
z ≡ y′ − (log (x) − C

)
y − 2

3

)
= 0

is obtained. Integration of the first-order component leads to the general solution

y = exp

(
1

3
x3 + C1x

) (
C2 + 2

∫
exp

(
−C1x − 1

3
x3

)
dx

)

of (12). This equation does not have any Lie symmetry. ��

2.2 Riccati components

A component containing a quadratic nonlinearity is considered next. Like the linear
component considered in the preceding section any such component guarantees the
existence of a special solution. If theRiccati component contains a constant, the general
solution of the corresponding second-order equation may be obtained from it.
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Decomposition of ordinary differential equations 583

Proposition 3 Let a second-order quasilinear equation (3) be given. In order that it
has a first-order Riccati component z ≡ y′ + a(x)y2 + b(x)y the coefficients a(x)
and b(x) have to be solutions of

(a′ − 2a2y)y2 − 3aby2 + (b′ − b2)y −
K∑

k=0

(−1)kck(ay
2 + by)k = 0. (13)

Then (3) may be written as follows:

(
z′ − (2ay + b)z +

K∑
k=1

ck
(
(z − ay2 − by)k + (−1)k+1(ay2 + by)k

))

(
z ≡ y′ + ay2 + by

) = 0. (14)

The coefficients a and b satisfy a first-order algebro-differential system; its degree in
a and b is bounded by K except for K = 1 where the degree in a is 2. For low values
of K Eqs. (13) and (14) are explicitly given as follows.

K = 1 :
{

(a′ − 2a2y)y2 − 3aby2 + (b′ − b2)y + c1(ay2 + by) − c0 = 0,(
z′ − (2ay + b)z + c1z

)
(z ≡ y′ + ay2 + by) = 0;

K = 2 :

⎧⎪⎪⎨
⎪⎪⎩

(a′ − 2a2y)y2 − 3aby2 + (b′ − b2)y − c2(ay2 + by)2 + c1(ay2 + by)
−c0 = 0,(
z′ − (2ay + b)z + c2z2 − 2c2(ay2 + by)z + c1z

)
(z ≡ y′ + ay2 + by)

= 0;

K = 3 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a′ − 2a2y)y2 − 3aby2 + (b′ − b2)y + c3(ay2+by)3 − c2(ay2 + by)2

+c1(ay2 + by) − c0 = 0,(
z′ − (2ay + b)z + c3z3 − 3c3(ay2 + by)z2 + c2z2 + 3c3(ay2 + by)2z

−2c2(ay2 + by)z + c1z
)

(z ≡ y′ + ay2 + by) = 0.
(15)

The proof is similar as for Proposition 2 and is therefore omitted. The subsequent
examples apply the preceding proposition.

Example 5 For the equation

y′′ + 2yy′ + 2

x
y′ + 2

x
y2 = 0 (16)

K = 1, c1 = 2y + 2
x and c0 = 2

x y
2. According to Proposition 2 there exists the

decomposition
(
z′ + 1

x z + 2yz
) (

z = y′ + 1
x y

)
= 0 from which only the special

solution y = C
x follows. Proposition 3 yields the system

a2 − a = 0, a′ + 2

x
a − 2

x
− (3a − 2)b = 0, b′ − b2 + 2

x
b = 0.
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584 F. Schwarz

The alternative a = 0, b = 1
x reproduces the linear component given above; the other

alternative a = 1, b = 0 leads to the decomposition (z′ + 2
x z)(z ≡ y′ + y2) = 0;

the equation z′ + 2
x z = 0 has the general solution z = C1

x2
. It leads to the equation

y′ + y2 = C1
x2

with the solution

y = 1
x

(
1
2 − C1 tan(C1 log x + C2)

)

where the constant C1 has been redefined; this is the general solution of (16). It has a
two-parameter group of Lie symmetries with generators

U1 = x∂x − y∂y, U2 = x log (x)∂x −
(
y log (x) + y − 1

2x

)
∂y

which is difficult to apply for solving it. ��
Example 6 Consider the equation

yy′′ − y′2 − (x2 + 1)y2y′ − 2xy3 = 0 (17)

with K = 2. Its coefficients are c2 = −1
y , c1 = −(x2 + 1)y and c0 = −2xy2. By

Proposition 2 a linear first-order component does not exist. According to Proposition 3
the system

a(a + x2 + 1) = 0, a′ − (a + x2 + 1)b + 2x = 0 and b′ = 0

for a and b is obtained. Its general solution is a = −(x2 + 1) and b = C where C is
a constant. It yields the decomposition

(
z′ − 1

y
z2 − (y + x2y − C)z

) (
y′ − (x2 + 1)y2 + Cy = 0

) = 0.

Integrating the first-order component the general solution

y = C3
1

(C1x + 1)2 + C2
1 + 1 + C2 exp (C1x)

of Eq. (17) follows. It may be shown that it does not have any Lie symmetry. To this
end, a Janet basis of the determining system for its symmetries has to be computed
that is rather complex. ��

2.3 Bernoulli components

Similar as a Riccati component in the preceding subsection, a Bernoulli component
containing a nonlinearity yn , and in addition a linear term proportional to y guarantees
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Decomposition of ordinary differential equations 585

the existence of a special solution; if the Bernoulli component contains a constant the
general solution follows. The main result is given next.

Proposition 4 Let a second-order quasilinear equation (3) be given. In order that it
has a first-order Bernoulli component z ≡ y′+a(x)yn+b(x)y, n > 2, the coefficients
a and b have to satisfy

(a′ − na2yn−1)yn − (n+ 1)abyn + (b′ − b2)y−
K∑

k=0

(−1)kck(ay
n + by)k = 0. (18)

Then (3) may be written as follows.

(
z′ − (nayn−1 + b)z +

K∑
k=1

(
(z − ayn − by)k + (−1)k+1(ayn + by)k

))

(
z ≡ y′ + ayn + by

) = 0. (19)

The coefficients a and b may be obtained from a first-order algebro-differential system;
its degree in a and b is bounded by K except for K = 1 where the degree in a is 2.
For low values of K (18) and (19) are explicitly given as follows.

K = 1 :
{

(a′ − na2yn−1)yn − (n + 1)abyn + (b′ − b2)y + c1(ayn + by) − c0 = 0,(
z′ − (nayn−1 + b)z + c1z

)
(z ≡ y′ + ayn + by) = 0;

K = 2 :

⎧⎪⎪⎨
⎪⎪⎩

(a′ − na2yn−1)yn − (n + 1)abyn + (b′ − b2)y − c2(ayn + by)2

+c1(ayn + by) − c0 = 0,(
z′ − (nayn−1 + b)z + c2z2 − 2c2(ayn + by)z + c1z

)
(z ≡ y′ + ayn + by) = 0;

K = 3 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a′ − na2yn−1)yn − (n + 1)abyn + (b′ − b2)y + c3(ayn + by)3

−c2(ayn + by)2 + c1(ayn + by) − c0 = 0,(
z′ − (nayn−1 + b)z + c3z3 − 3c3(ayn + by)z2 + c2z2

+3c3(ayn + by)2z
−2c2(ayn + by)z + c1z

)
(z ≡ y′ + ayn + by) = 0.

(20)

The proof is similar as for Proposition 2 and is therefore omitted. The equation of
the subsequent example does not have any Lie symmetry, i.e. decomposition is the
only means for solving it.

Example 7 The equation

yy′′ − y′2 + 2y3y′ + xy2 = 0 (21)

with K = 2 has coefficients c2 = −1
y , c1 = 2y2 and c0 = xy. A linear or Riccati

component does not exist. The lowest Bernoulli component of interest corresponds to
n = 3. For these values Proposition 4 yields the system

a2 − a = 0, a′ + 2ab − 2b = 0, b′ − x = 0.
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Its solution a = 1, b = 1
2 x

2 + C leads to the decomposition

(
z′ − 1

y
z2 +

(
y2 + 1

2
x2 + C

)
z

)(
z ≡ y′ + y3 +

(
1

2
x2 + C

)
y

)
= 0.

Integrating the right component the general solution

y = 1
√

(2) exp

(
C1x + 1

6
x3

) (∫
exp

(
−2C1x − 1

3
x3

)
dx + 1

2
C2

)1/2

of equation (21) is obtained. It does not have any Lie symmetry. ��

2.4 Abel components

Abel’s equations of the first and second kind were amongst the first systematically
investigated ode’s. Therefore they are included in this chapter although they are only
in exceptional cases integrable in closed form; a rather detailed discussion may be
found in [18], pp. 179–185. At first Abel’s equations of the first kind are considered.

Proposition 5 Let a second-order quasilinear equation (3) be given. In order that it
has an Abel component of first kind z ≡ y′ + a(x)y3 + b(x)y2 + c(x)y + d(x) the
coefficients a, b, c and d have to be solutions of

(a′ − 3a2y2)y3 + (b′ − 2b2y)y2 + (c′ − c2)y + d ′

−(5by2 + 4cy + 3d)ay2 − (3by2 + d)c

−
K∑

k=0

(−1)kck(ay
3 + by2 + cy + d)k = 0. (22)

Then (3) may be written as follows:

(
z′ − (3ay2 + 2by + c)z +

K∑
k=1

ck
(
(z − ay3 − by2 − cy − d)k

+(−1)k+1(ay3 + by2 + cy + d)k
))

(
z ≡ y′ + ay3 + by2 + cy + d

) = 0. (23)

The coefficients a, b, c and d may be obtained from a first-order algebro-differential
system; its degree in these coefficients is bounded by K except for K = 1 where the
degree in a, b and c is bounded by 2. For low values of K Eqs. (22) and (23) are
explicitly given as follows.
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K = 1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a′−3a2y2)y3+(b′−2b2y)y2+(c′−c2)y+d ′ − (5by2+4cy + 3d)ay2

−(3by2 + d)c + c1(ay3 + by2 + cy + d) − c0 = 0,(
z′ − (3ay2 + 2by + c

)
z + c1z

)(
z ≡ y′ + ay3 + by2 + cy + d

) = 0;

K = 2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a′−3a2y2)y3+(b′−2b2y)y2+(c′−c2)y+d ′−(5by2+4cy + 3d)ay2

−(3by2 + d)c − c2
(
a2y6 + 2aby5 + (2ac + b2)y4 + 2(ad + bc)y3

+(2bd + c2)y2 + 2xdy + d2
)
c1(ay3 + by2 + cy + d) − c0 = 0,(

z′ − (3ay2 + 2by + c)z2 + c2z2 − 2c2(ay2 + by2 + cy + d)z
)

(
z ≡ y′ + ay3 + by2 + cy + d

) = 0;
(24)

The proof is similar as for Proposition 2 and is therefore again omitted. Due to
the larger number of unknown coefficients in the Abel component the system for its
determination usually comprises more equations as the following example shows.

Example 8 The equation

y′′ + 3

x5
y2y′ − 1

x
y′ − 6

x6
y3 = 0 (25)

with K = 1 has coefficients c1 = 3
x5

y2 − 1
x and c0 = − 6

x6
y3. The preceding

proposition leads to the following system for a, b, c and d.

a
(
a − 1

x5
) = 0, b

(
5a − 3

x5
) = 0,

a′ + 3

x5
c − 1

x
a + 6

x6
− 2b2 − 4ac = 0, b′ + 3ad + 3bc − 3

x5
d + 1

x
b = 0,

c′ − c2 − 1

x
c = 0, d ′ − cd − 1

x
d = 0.

Its solution is a = 1
x5

, b = c = 0 and d = Cx where C is an undetermined constant.

It leads to the decomposition

(
z′ − 1

x
z

) (
z ≡ y′ + 1

x5
y3 + Cx

)
= 0

of Eq. (25). Integration of the right component finally yields its general solution in the
form y = 1√

C1
x2u where u is determined by

∫
du

u3 − 2C1u + 1
= log x + C2.
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The one-parameter group of Lie symmetries with generator x∂x + 2y∂y leads to a
similar answer, albeit much less efficiently. ��

Abel equations of the second kind are considered next. It is assumed that there is a
quadratic term in y. Although it may always be removed by a variable change, this is
in general only possible by an extension of the base field that is inconvenient for the
further proceeding.

Proposition 6 Let a second-order quasilinear equation (3) be given. In order that it
has an Abel component of second kind z ≡ yy′+a(x)y2+b(x)y+c(x) the coefficients
a(x), b(x) and c(x) have to be solutions of

(a′ −a2)y4 + (b′ −ab)y3 + c′y2 +bcy+ c2 −
K∑

k=0

(−1)kck y
3−k(ay2 +by+ c)k = 0.

(26)
Then (3) may be written as follows:

(
z′ −

(
a − c

y2

)
z +

K∑
k=1

ck
1

yk

(
(yz − ay2 − by − c)k

+(−1)k+1(ay2 + by + c)k
)) (

z ≡ y′ + ay + b + c

y

)
. (27)

The coefficients a, b and c may be obtained from a first-order algebro-differential
system; its degree is bounded by K except for K = 1 where the degree in a and c is
2. For low values of K Eqs. (26) and (27) are explicitly given as follows.

K = 1 :
{

(a′ − a2)y4 + (b′ − ab)y3 + c′y2 + bcy + c2 + c1y2(ay2 + by + c) − c0y3 = 0,(
z′ − (

a − c
y2

)
z + c1z

)(
z ≡ y′ + ay + b + c

y
) = 0;

K = 2 :

⎧⎪⎨
⎪⎩

(a′ − a2)y4 + (b′ − ab)y3 + c′y2 + bcy + c2

−c2y(ay2 + by + c)2 + c1y2(ay2 + by + c) − c0y3 = 0,(
z′ − (

a − c
y2

)
z + c1z + c2z2 − 2c2

(
ay + b + c

y
)
z
)(
z ≡ y′ + ay + b + c

y
) = 0;
(28)

Proof The computations are performed with y′+ay+b+ c
y . At first r = ay+by+ c

y
is substituted into (4) and (5), then the substitution y′ = z

y −ay−b− c
y is performed.

As a result the sums at the left-hand side of (26) are a polynomial in z, its coefficients
may depend explicitly on y. ��
Example 9 The equation

yy′′ + y′2 + 2

x
yy′ + 1 = 0 (29)

with K = 2 has coefficients c2 = 1, c1 = 2y
x and c0 = 1. The preceding proposition

leads to the following system for a, b and c.
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a′ − 2a2 + 2
x a = 0, b′ − 3ab + 2

x b = 0,

c′ + 2
x c − 2ac − b2 − 1 = 0, bc = 0.

The alternative c = 0 from the last equation leads to b = ±i from the third equation,
then the second equation yields a = 2

3x which does not satisfy the first equation;
therefore this alternative is excluded. The alternative b = 0 leaves the two equations

a′ − 2a2 + 2

x
a = 0, c′ + 2

x
c − 2ac − 1 = 0.

Two special solutions are a = 1
2x , c = 1

2 x + C
x and a = 0, c = 1

3 x + C
x2

; they lead

to the decompositions

(
z′ + 1

x
z

)(
z ≡ yy′ + 1

2x
y2 + 1

2
x + C

x

)
= 0 and

(
z′ + 2

x
z

)(
z ≡ yy′ + 1

3
x + C

x2

)
= 0

respectively. Integrating either one of them the general solution

y =
⎛
⎜⎝
C1 + C2x − 1

3
x3

x

⎞
⎟⎠

1/2

follows. The eight-parameter group of Lie symmetries leads to the same answer, albeit
much less efficiently. ��

2.5 Separable components

This is the first decomposition typewhere an unspecified dependence on y occurs in the
coefficients of the first-order component. As a consequence, the determining system
comprises ode’s w.r.t. to both x and y. Details are given in the following proposition.

Proposition 7 Let a second-order quasilinear equation (3) be given. A first-order
component y′ + s(x)r(y) exists if s(x) and r(y) satisfiy

s2r
dr

dy
− ds

dx
r +

k=K∑
k=0

(−1)kcks
krk = 0. (30)

Then (3) may be written as follows.

(
z′ − s

dr

dy
z +

K∑
k=0

ck
(
(z − sr)k + (−1)k+1(sr)k

))
(z ≡ y′ + sr) = 0. (31)
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For low values of K this means:

K = 1 :
{
s2r drdy − s′r − c1sr + c0 = 0,

(
z′ − s drdy z + c1z

)
(z ≡ y′ + sr) = 0;

K = 2 :
⎧⎨
⎩
s2r drdy − s′r + c2s2r2 − c1sr + c0 = 0,(
z′ − s drdy z + c2z2 − (2c2sr − c1)z

)
(z ≡ y′ + sr) = 0;

K = 3 :

⎧⎪⎪⎨
⎪⎪⎩
s2r drdy − s′r − c3s3r3 + c2s2r2 − c1sr + c0 = 0,(
z′ − s drdy z + c3z3 − (3c3sr − c2)z2 + (3c3s2r2 − 2c2sr + c1)z

)
(z ≡ y′ + sr) = 0.

(32)

Proof Reduction of y′′ yields the first two terms of (30), and the term z′ − sr drdy z to

the left component in (31). The remaining terms follow from algebraic reduction of
y′k w.r.t. y′ + sr . ��

Due to the explicit dependence of the coefficient r(y) on y the constraint (30)
may not be separated w.r.t. powers of y, i.e. there is a single equation involving s(x)
and r(y). There does not seem to exist a solution procedure for general equations
of this kind. For the special case K = 2, c2 = f (y), c1 = g(x) and c0 = 0, i.e.
y′′ + f (y)y′2 + g(x)y′ = 0 however the constraint for r and s may be rewritten in the

form dr
dy + f (y)r = 1

s2

(
ds
dx + g(x)s

)
, reducing the problem to solving two linear

first-order equations. The subsequent examples apply this scheme.

Example 10 The equation

y′′ − y

y2 − 1
y′2 + x

x2 − 1
y′ = 0 (33)

with K = 2 has coefficients c2 = − y
y2 − 1

, c1 = x
x2 − 1

and c0 = 0. According to

Proposition 7 the equation

s2r
dr

dy
− ds

dx
r − y

y2 − 1
s2r2 − x

x2 − 1
sr = 0

follows. It may be written as

dr

dy
− y

y2 − 1
r = 1

s2

(
ds

dx
+ x

x2 − 1
s

)
.
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Its solution r = C
√
y2 − 1, s = 1√

x2 − 1
leads to the decomposition

(
z′

)⎛
⎝z ≡ y′ + C

√
y2 − 1√
x2 − 1

⎞
⎠ = 0.

The right component yields the general solution

y = C2
1

(√
x2 − 1 + x

)2C2 + 1

2C1
(√

x2 − 1 + x)
)C2

of Eq. (33). Although it has an eight-parameter group of Lie symmetries, it does not
allow its integration due the rather complicated generators of the symmetry algebra.

��
Example 11 The equation

y′′ + yy′2 + xy′ = 0 (34)

with K = 2 has coefficients c2 = y, c1 = x and c0 = 0. According to Proposition 7
the equation

s2r
dr

dy
− ds

dx
+ ys2r − xsr = 0

follows. It may be written as

dr

dy
+ yr = 1

s2

(
ds

dx
+ xs

)
= 0.

Its solution r = C exp
(
1
2 y

2
)
, s = exp

(
1
2 x

2
)
leads to the decomposition

(
z′

) (
z ≡ y′ + C exp

1

2
(x2 + y2)

)
.

The right component yields the general solution

erf

(
y√
2

)
+ iC1erf

(
i x√
2

)
= C2

of Eq. (34). The same remarks apply to the use of its eight-parameter group of Lie
symmetries as in the preceding example. ��

If an equation does not contain x explicitly, its order may be reduced by exchange
of x and y. This ad hoc method may be replaced by a decomposition of the type as
described in the preceding proposition with s(x) = 1. The resulting constraints for
r(y) are much more manageable as the following corollary shows.
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Corollary 1 Let a second-order quasilinear equation (3) be given. A first-order com-
ponent y′ + r(y) exists if r(y) satisfies

r
dr

dy
+

K∑
k=0

(−1)kckr
k = 0. (35)

Then (3) may be written as follows.

(
z′ − dr

dy
z +

K∑
k=0

ck
(
(z − r)k + (−1)k+1rk

))
(z ≡ y′ + r) = 0. (36)

For low values of K this means:

K = 0 :
{
r drdy + c0 = 0,

(
z′ − dr

dy z
)
(z ≡ y′ + r) = 0;

K = 1 :
{
r drdy − c1r + c0 = 0,

(
z′ − dr

dy z + c1z
)
(z ≡ y′ + r) = 0;

K = 2 :
⎧⎨
⎩
r drdy + c2r2 − c1r + c0 = 0,(
z′ − dr

dy z + c2z2 − (2c2r − c1)z
)
(z ≡ y′ + r) = 0;

K = 3 :
⎧⎨
⎩
r drdy − c3r3 + c2r2 − c1r + c0 = 0,(
z′ − dr

dy z + c3z3 − (3c3r − c2)z2 + (3c3r2 − 2c2r + c1)z
)
(z ≡ y′ + r) = 0.

(37)

Proof Reduction of y′′ yields the contribution r drdy to the constraint for r , and the term

z′ − dr
dy z to the left component. The remaining terms follow from algebraic reduction

of y′k w.r.t. y′ + r . ��

Example 12 The equation

yy′′ − 5

4
y′2 + 2

3
y3 = 0 (38)

with K = 2 has coefficients c2 = − 5
4y , c1 = 0 and c0 = 2

3 y
2. According to the

preceding corollary the equation r drdy − 5
4y r

2 + 2
3 y

2 = 0 for r follows with general

solution r = y
√
C

√
y − 8

3 y; it leads to the decomposition

⎛
⎜⎜⎝z′ − 5

4y
z2 −

5

4
C

√
y − 8

3
y√

C
√
y − 8

3
y

z

⎞
⎟⎟⎠

(
z ≡ y′ + y

√
C

√
y − 8

3
y

)
= 0.
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Integration of the right component yields the general solution of (38) in the form

y = 36C2
1

(6C2
1C

2
2 + 12C2

1C2x + 6C2
1 x

2 + 1)2
.

The three-parameter Lie symmetry group with generators ∂x , x2∂x −4xy∂y and x∂x −
2y∂y yields the same answer. ��

2.6 Homogeneous components

In Sect. 4.6 of Kamke [10] various types of first-order equations are considered that
maybe transformed into an homogeneous equation; here only case 4.6(c) is considered.

Proposition 8 Let a second-order quasilinear equation (3) be given. In order for a
first-order component

y′ + ax + by + c

αx + βy + γ
= 0 (39)

to exist the constant coefficients a, b, c, α, β and γ have to satisfy an algebraic system.
For K = 2 or K = 3 it comprises at least 10 equations; for K > 3 the number of
equations is greater or equal than 1

2 (K + 1)(K + 2).

Proof Reduction of (3) w.r.t. (39) and the second-order expression for y′′ following
from it leads to a polynomial condition in x , y and the variables a, b, c, α, β and γ .
The vanishing of this polynomial requires that the coefficients of the monomials in
x and y vanish, this yields the algebraic system. The number of different monomials
is minimal if the coefficients ck in (3) are constant. For K ≥ 4 they are determined
by the highest power K that occurs in a trinomial expansion. For K = 2 and K = 3
the third power in the denominator of the derivative of (39) yields the highest power
three. �

This result shows that the number of equations is considerably larger than the
number of unknowns which is 6. As a consequence, the existence of components of
this type is very rare. Because linear components have been considered before, the
constraintβ 	= 0 is imposed; this leads inmany cases to a fast exclusion of a component
(39). Furthermore, the equations originating from high monomials ymxn are often
reducible; this property makes a Gröbner basis algorithm that applies factorization
very efficient. The subsequent example is typical for this behavior.

Example 13 The equation

yy′′ + y′2 − 1

x
yy′ = 0 (40)
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with K = 2 has coefficients c2 = 1
y , c1 = −1

x and c0 = 0. According to the preceding
proposition, the following system for the undetermined coefficients is obtained.

bβ = 0, (2α + b)bβ = 0, (2bγ + βc)β = 0,
aαβ + abβ + 2α2b + 2αb2 = 0, 2αbγ + 3αβc + 2b2γ + bβc = 0,

(bγ + 2βc)γ = 0, (α + 3b)αb = 0, aαγ + 3abγ + 2α2c + 3αbc = 0,
(αγ + b)c = 0, cγ = 0, aα = 0, aγ + 2αc = 0, 2aγ + αc = 0, cγ = 0.

Simplification due to the constraint β 	= 0 and the requirement that the trivial com-
ponent y′ = 0 is excluded leads in a few steps to b = c = α = γ = 0 leaving the
quotient ax

βy . Introducing the new constant C ≡ a
β

yields finally

(
z′ + 1

y
z2 −

(
C
x

y
+ 1

x

)
z

) (
y′ + C

x

y

)
= 0.

Integrating the right component, the general solution y = C1(x2 + C2
)1/2 of (40)

is obtained. In addition (40) allows also a decomposition with a linear first-order
component.

(
z′ + 1

y
z2 − C − 2x2

Cx(x2 + 1)
z

)(
z ≡ y′ − x

x2 + C
y

)
= 0.

The solution of (40) may also be obtained from its 8-parameter group of Lie symme-
tries. ��

3 Decomposition of equivalence classes

The symmetry type of an ode is invariant under point transformations. As a conse-
quence, the full equivalence class of an equation has the same symmetry type. By
contrast, the decomposition type of an ode is not invariant under general point trans-
formations because in general it changes the type of the right component. For example,
if Eq. (17) of Example 6 is transformed by x → xy and y → 1

y it has the form

x2yy′′ − x2y′2 − x3(x2 + 2x + 2)y2y′ − x2(3x2 + 4x + 1)y3 − y2 = 0

that does no longer have a Riccati component. However, the equation transformed by
x → x + 1 and y → xy does have a Riccati component as shown in Example 15
below. The reason is that this latter transformetion belongs to the structure invariance
group of the Riccati component. This means, the solution procedure that applies to
the originally given equation applies to the full equivalence class of the respective
structure invariance group.

In the subsequent proposition the structure invariant groups of the right components
considered in the preceding section are determined.
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Proposition 9 The first-order right components given in the preceding section have
the following structure invariance groups. F, G and H are undetermined functions of
its argument; u and v(u) are the transformed independent and dependent variables
respectively.

– The linear component y′ + a(x)y + b(x) = 0 and the general Riccati component
y′+a(x)y2+b(x)y+c(x) = 0 are invariant w.r.t. x = F(u), y = G(y)v+H(u).

– The Bernoulli component y′ + a(x)yn + b(x)y = 0 and for n = 2 the special
Riccati component are invariant w.r.t. x = F(u), y = G(u)v.

– The separable component y′ + r(y) = 0 is invariant w.r.t. x = Cu + F(v),
y = G(v); C is an undetermined constant.

– The separable component y′ + s(x)r(y) = 0 is invariant w.r.t. x = F(u) and
y = G(v).

– The homogeneous component y′ + ax + by + c
αx + βy + γ

= 0 is invariant w.r.t. x =
āu + b̄v + c̄ and y = ᾱu + β̄v + γ̄ ; the barred variables are undetermined
constants.

– The homogeneous component y′ +
a
( y
x

)2 + b
y

x
+ c

α
( y
x

)2 + β
y

x
+ γ

= 0 is invariant w.r.t. x =

āu and y = ᾱu; ā and ᾱ are undetermined constants.

Proof The proof follows closely [18], Chapters 4.1 and 4.2. Let u, v(u) be the new
independent and dependent variables respectively, and

x = ϕ(u, v), y = ψ(u, v) and y′ = ψu + ψvv
′

ϕu + ϕvv
′ . (41)

Substitution into the linear component y′ + a(x)y + b(x) yields

v′ + ψu + (
a(ϕ)ψ + b(ϕ)

)
ϕu

ψv + (
a(ϕ)ψ + b(ϕ)

)
ϕv

= 0.

In order to avoid the occurence of an unspecified dependence on v via the coefficients
a and b, ϕv = 0 is required, i.e. ϕ ≡ F(u). The denominator must be independent of v,
this requires ψv = G(u), consequently ψ = G(u)v + H(u). Under these constraints
the above expression simplifies to the linear component

v′ +
(
G ′

G
+ a(F)F ′

)
v + H ′ + (a(F)H + b(F)) F ′

G
= 0,

i.e. the structure invariance group is x = F(u), y = G(u)v + H(u). The proof for the
Riccati component is similar and is therefore omitted.

Performing the same steps for the Bernoulli component y′ + a(x)yn + b(x)y = 0
for n ≥ 2 leads to an expression containing the terms a(Gv + H)n and b(Gv + H);
in order to avoid powers of v different from n and 1, H = 0 is required. The resulting
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component in the new variables is

v′ + aGn−1vn +
(
G ′

G
+ bF ′

)
v = 0.

The separable component y′ + r(y)y = 0 is transformed by (41) into v′ +
ψu + r(ψ)ϕu
ψv + r(ψ)ϕv

= 0. In order to avoid a dependence on u of the fraction via r , ψ

must be independent of u, i.e. ψ ≡ F(v). For the same reason ϕuu = ϕuv = 0 is
required, it leads to ϕ = Cu + G(v), C a constant and the transformed equation
becomes

v′ + Cr(G)

G ′ + F ′r(G)
= 0.

The general separable component y′ + s(x)r(y) = 0 is transformed into v′ +
ψu + s(ϕ)r(ψ)ϕu
ψv + s(ϕ)r(ψ)ϕv

= 0. Similar reasoning as in the preceding case leads to the con-

straints ϕv = 0 and ψu = 0, i.e. ϕ = F(y) and ψ = G(v) and the transformed
equation becomes

v′ + s
(
F(u)

)
r
(
G(v)

) F ′(u)

G ′(v)
= 0.

Transforming the homogeneous component y′ + ax + by + c
αx + βy + γ

= 0 by (41) yields

v′ + (αϕ + βψ + γ )ψu + (aϕ + bψ + c)ϕu

(αϕ + βψ + γ )ψv + (aϕ + bψ + c)ϕv

= 0.

In order that the fraction is a linear homogeneous expression in u and v, the transfor-
mation functions must be linear functions in these variables as given above.

Finally, substituting (41) into y′ +
a
( y
x

)2 + b
y

x
+ c

α
( y
x

)2 + β
y

x
+ γ

= 0 yields a rather compli-

cated first-order component for v(u); it is easy to see that it has the required structure
if ϕ = āu, ψ = b̄v where ā and b̄ are undetermined constants. ��

This result will be applied to several examples that have been considered previously.
At first an equation with a linear component is shown.

Example 14 The equation of Example 3 has a linear first-order component. According
to the preceding proposition it is transformed by x → x + 1, y → xy with the result

y′′ − x
(x + 1)2

y′2 + 4x2 + 4x + 2
(x + 1)2

yy′ − (2x3 + 4x2 + x − 2)2

x(x + 1) y′

− (2x2 + 2x − 1)2

x(x + 1)2
y2 − 2x2 + 4x + 3

x(x + 1) y = 0.

(42)
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The first order component is transformed into

y′ − 2x2 + 2x − 1

x
y + x + 1

log (x + 1) + C
= 0.

Integration yields the general solution of (42).

y = 1

x
exp (x2 + 2x)

(
C1 −

∫
(x + 1) exp (−x2 − 2x)dx

log (x + 1) + C2

)
.

��
Example 15 In Example 6 an equation has been considered that does not have any
Lie symmetry. Its special Riccati component allows the same transformation as in the
preceding example with the result

yy′′ − y′2 − x(x2 + 2x + 2)y2y′ − (3x2 + 4x + 2)y3 − 1

x
y2 = 0. (43)

Its component y′ − x(x2 + 2x + 2)y2 + ( 1
x + C

)
y = 0 yields the general solution

y = C3
1

x
(
(x2 + 2x + 2)C2

1 + 2(x + 1)C1 + 2
) + C2x exp (C1x)

.

��
These examples show that the equivalence classes of the structure invariance groups

of decomposable equations may contain equations of enormous complexity. Their
decomposition and therefore its general solution may easily be determined; most of
the time there is no other solution procedure available.

4 Algorithmic and computational issues

In order to faciliate a decomposition by pencil-and-paper, the determining systems for
the coefficients of a component have been given explicitly in Sect. 2 for low values
of K because they occur frequently in applications. Furthermore, the decomposition
procedures described in this article are implemented in the computer algebra system
ALLTYPES that is available in the internet [19]. Various aspects that are relevant
in this connection are discussed subsequently. Thereafter the relationship between
symmetry analysis and decomposition is discussed in some detail.

4.1 Solving the determining system

The determining system for a first-order component depends on the type of decompo-
sition. For linear, Riccati, Bernoulli and Abel components its coefficients are functions
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of the independent variable x . They are determined by an algebro-differential system
with the following properties according to Sect. 2.

– For quasilinear second-order equations all derivatives are of first order and first
degree; for equations of order n its order is n − 1.

– The degree of the coefficients is bounded by the order K of the first derivative in
the given second-order equation if K > 1, and by 2 if K = 1.

The details of this system depend on the given ode. In any case, by standard elimination
procedures it is always possible to decide its consistency. If a system is inconsistent
the corresponding component does not exist even if a universal field is allowed for
the coefficients. Otherwise the structure of the system determines the function field
where a closed-form solution may exist. For K = 2 the differential equation is usually
a Riccati equation, the existence of a component with rational coefficients may be
decided and effectively determined. For K = 3 it is an Abel equation.

For homogeneous components considered in Proposition 8 the undetermined ele-
ments are constants, consequently the determining system is a system of algebraic
equations. Initially it is usually quite voluminous. The following two features make
the problem manageable.

– Because the vanishing of β leads to a linear component that has been considered
before, the constraint β 	= 0 is included in the solution procedure.

– A Gröbner basis algorithm with factorization and consequently branching into
smaller problems is applied whenever possible.

Extensive tests have shown that proceeding in thisway inconsistent systems are quickly
discovered and may be discarded. The remaining interesting cases comprise only a
few simple equations.

4.2 Smmetry analysis versus decomposition

In order to compare the power of various solution schemes it is necessary to apply
them to representative collections of equations. To begin with, this is the collection of
solved equations by Kamke [10]. Chapter 6 contains about 250 equations of second
order, 185 of them are quasilinear, and about 130 are polynomial in y′ and rational in x
and y, i.e. they have the structure y′′ + R(x, y, y′) where R ∈ Q(x, y)[y′]. The result
of applying the decomposition schemes of this article to these equations are listed in
detail in the “Appendix”. A summary is given next.

The general solution may be obtained most of the time by a decomposition for the
following equations.

6.1, 6.2, 6.4, 6.7, 6.10. 6.12, 6.37, 6.39, 6.40, 6.41, 6.42, 6.44, 6.45, 6.50, 6.52, 6.56,
6.57, 6.63, 6.71, 6.78, 6.80, 6.81, 6.86, 6.89, 6.93, 6.99, 6.104, 6.107, 6.109, 6.110,
6.111, 6.117, 6.122, 6.123, 6.124, 6.125, 6.126, 6.127, 6.128, 6.129, 6.131, 6.133,
6.134, 6.135, 6.136, 6.137, 6.138, 6.139, 6.140, 6.141, 6.143, 6.146, 6.150, 6.151,
6.153, 6.154, 6.155, 6.157, 6.158, 6.159, 6.160, 6.162, 6.163, 6.164, 6.165, 6.167,
6.168, 6.169, 6.170, 6.173, 6.174, 6.175, 6.176, 6.178, 6.179, 6.180, 6.181, 6.182,
6.183, 6.184, 6.185, 6.187, 6.188, 6.191, 6.192, 6.193, 6.194, 6.195, 6.196, 6.197,
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6.200, 6.201, 6.202, 6.204, 6.206, 6.209, 6.212, 6.214, 6.220, 6.224, 6.226, 6.227,
6.231, 6.232, 6.235, 6.236, 6.238, 6.239, 6.240.

One or more special solutions involving a single parameter may be obtained for the
following equations.

6.24, 6,30, 6.31, 6.32, 6.33, 6.35, 6.51, 6.58, 6.60, 6.79, 6.87, 6.98, 6.116, 6.189,
6.190, 6.208.

Finally, no decomposition is obtained for the remaining 37 equations so that the
decomposition procedures described in Sect. 2 are of no avail for their solution.

6.3, 6.5, 6.6, 6.8, 6.9, 6.21, 6.23, 6.26, 6.27, 6.34, 6.36, 6.38, 6.46, 6.47, 6.72, 6.73,
6.74, 6.91, 6.95, 6.100, 6.105, 6.106, 6.108, 6.114, 6.115, 6.142, 6.147, 6.148, 6.149,
6.152, 6.156, 6.172, 6.186, 6.205, 6.210, 6.211, 6.219.

In [18], Appendix E it is shown that almost all equations in Kamke’s collection
have a nontrivial group of Lie symmetries. Many of them may be applied for solving
the equation although this is not mentioned by Kamke. Often it remains unclear how
the given solution is obtained. For the 37 equations for which no decomposition has
been found a closed-form solution is not known. Often solutions in terms of elliptic
integrals, Painlevé transcendents or series expansion are given; it is not clear how they
have been obtained.

Summing up, it is obvious that by decomposition almost all known closed form
solutions may be obtained, in general much more efficiently than applying Lie’s sym-
metry analysis. What is missing for a complete solution scheme as mentioned in the
introduction is a proof that a closed form solution possibly does not exist in those
cases where none is found.

These remarks apply to equations with nontrivial Lie symmetries. In order to
broaden the scope of decomposition methods a systematic study of equations with
no symmetries has been performed. In this context the following question arises: how
special are equations with Lie symmetries? To this end a random generator for second-
order equations of the type considered in this article is applied. Its parameter space
is such that the equations in Chapter 6 of Kamke [10] are essentially covered; for
the maximal order K of y′ the value K = 2 is chosen, with rational coefficients of
maximal degree 3 or 2 in y and x respectively.

The first result may be described as follows. In a test run with 104 random ode’s
in this parameter space there occur about 100 with a symmetry, i.e. about 1%; about
80 of them are one-parameter symmetries of some kind, there is a single one with a
2- or 3-parameter group, and about 20 with an 8-parameter projective symmetry. This
result shows that equations with a symmetry are extremely special. The reason why
most equations in Kamke’s collection have a symmetry is probably that for equations
without a symmetry solutions are rarely known.

When it comes to determining closed form solutions for equations without a Lie
symmetry, decomposition is the only systematic solution procedure at hand. In order
to get an estimate of their power, 104 equations in the above parameter space without
any Lie symmetry have been randomly generated and the decomposition scheme of
Proposition 2 has been applied to them with the following result. On average about
3–5 linear first-order components comprising an undetermined constant have been
found, they yield the general solution of the corresponding second-order equation. In
about 100 cases one or more linear components without a parameter are obtained, they

123



600 F. Schwarz

yield special solutions containing a single parameter for the second-order equation.
In general, nonlinear first-order components are less frequent, it is estimated that all
decomposition types considered in this article will allow finding the general solution
in about one out of one thousend cases; special solutions containing a single parameter
will occur about ten times as often.

5 Summary and conclusions

The results of this article show that decomposition is a powerful tool for solving
ordinary differential equations. For equations allowing a Lie symmetry it is usually
more efficient to search for a decomposition than to go through the laborious steps
involved in symmetry analysis; often a solution found from a decomposition is in
simpler form than that obtained by symmetry analysis. If an equation does not have a
Lie symmetry, decomposition seems to be the only systematic method for determining
closed form solutions. This is all the more important due to the rareness of equations
with a symmetry as shown above. Furthermore, it would be of interest to determine
the relation between decomposition and Lie’s symmetry analysis in general.

Due to the efficiency of decomposition procedures it is advantageous to start a
solution procedure always by applying them first. If decomposition fails, symmetry
analysis may be another possibility to proceed. This strategy is implemented in the
computer algebra system ALLTYPES [19].

There are numerous possible extensions of the results described in this article. As
explained in the introduction, there are infinitelymany possible first order components;
here the simplest and most obvious ones have been applied. If they do not exist, or do
not lead to a solution, more sophisticated components may lead to additional solvable
cases. A systematic investigation of the existence of such first-order components and
its use for solving an equation would be highly desirable.

The equations considered here are quasilinear of second order, polynomial in the
first derivative and rational in the dependent and the independent variable. It is obvious
that the described decomposition methods may be applied to equations of any order
and any degree in the variables, a detailed discussion of these more general cases will
be given elsewhere; an algorithm for decomposing equations of any order into rational
components has been given by Gao and Zhang [8].

An example of decomposing an equation that is of second degree in the highest
derivative y′′ and of fourth degree in y′ is shown next.

Example 16 The equation

y2y′′2−2yy′2y′′ + 2

x2
y3y′′ + y′4−4yy′3+ 12x − 2

x2
y2y′2− 12

x2
y2y′ + 4x + 1

x4
y4 = 0

(44)
is quadratic in the second derivative and of degree four in the first one. It has a right
component that yields its general solution

z ≡ y′ −
(
1

x
+ 1

(x + C)2

)
y = 0 �⇒ y = C1x exp

(
x

C2(x + C2)

)
.
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Although Eq. (44) has a three-parameter symmetry group, the correspondig transfor-
mation to canonical form is very complicated and cannot be applied for solving it.

��
A slightly generalized third-order equation taken from [4], Sect. 3.4.1, a a constant,

is shown in the next example; it describes a special flow in fluid dynamics.

Example 17 The velocity components of a stagnation-point flow are determined by a
function f (η) that obeys a third-order equation f ′′′ + 2a f f ′′ − a f ′2 + a = 0. It may
be decomposed as

(
w′′ +

(
2a f + 2

η + C

)
w′ − aw2 ± 2aw

) (
w ≡ f ′ − 2

η + C
f ± 1

)
= 0 (45)

from wich the solution f = C1
(
η + C2

)2 ± 1
C2

η
(
η + C2

)
follows. This is a partial

solution containing two undetermined constants C1 and C2 whereas the general solu-
tion would contain three constants. It is interesting that the above solution does not
depend on a. ��

Additional decompositions of equations that are not quasilinear or of third-order
are included in the “Appendix”.

Of particular interest will be the extension of decomposition methods to par-
tial differential equations. An example containing two independent variables due to
Forsyth and Liouville [5,14] is shown next.

Example 18 The equation zx,y − zzx = 0 for z(x, y) may be written as wx
(
w ≡

zy − 1
2 z

2
) = 0. Writing the general solution of wx = 0 as Schwarzian derivative of

an undetermined function G(y) leads to

zy − 1

2
z2 =

(
G ′′(y)
G ′(y)

)′
− 1

2

(
G ′′(y)
G ′(y)

)2

;

this Riccati equation for the y-dependence of z has the obvious special solution z0 =
G ′′(y)
G ′(y) . Applying the standard procedure for solving Riccati equations yields the

general solution

z(x, y) = G ′′(y)
G ′(y)

− 2G ′(y)
F(x) + G(y)

;

F(x) and G(y) are undetermined functions of its argument. The proceeding shown in
this example should be compared with the ad hoc methods described in [5]. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix

The equations in Kamke’s collection [10] are an important benchmark test for solu-
tion procedures. For each entry the specification of parameters that have applied here
are given; they are chosen such that special cases like e.g. the vanishing of terms are
avoided. For each entry its symmetry class as defined in [18] is given; S2

0 or S3
0 means

that an equation does not have any nontrivial Lie symmetry. The result of solving an
equation by applying its Lie symmetries may be found in Appendix E of [18], it may
be used for comparison with the result from a decomposition given here. If a decom-
position exists, its right components are given. The corresponding left components
are omitted because they are often rather voluminous and are usuallynot necessary
for proceeding with the solution procedure. They may be obtained by applying the
procedures provided in the ALLTYPES system. There exist more collections of solved
differential equations like e.g. [16,17]. Applying decomposition to randomly chosen
equations of them leads to a similar conclusion as shown here.

Second-order equations of chapter 6

6.1 Symmetry class S2
2,2; y

′′ − y2 = 0; z ≡ y′ ±
√
2C + 2

3 y
3
) = 0.

6.2 Symmetry class S2
2,2; y

′′ − 6y2 + 4y = 0; z ≡ y′ ± 2
√
y3 − y2 + C

) = 0.

6.3 Symmetry class S2
0 ; y

′′ − 6y2 − x = 0; no decomposition found.

6.4 Symmetry class S2
1 ; y

′′ − 6y2 = 0; z ≡ y′ ± 2
√
y3 + C

) = 0.
6.5 a = b = c = 1, Symmetry class S2

0 ; y
′′ + y2 + x + 1 = 0; no decomposition

found.
6.6 a = 1, Symmetry class S2

0 ; y
′′ − 2y3 − xy + 1 = 0; no decomposition found.

6.7 Symmetry class S2
2,2; y

′′ − y3 = 0; z ≡ y′ ± 1
2
√
2
√
y4 + C

) = 0.

6.8 a = b = 1, Symmetry class S2
0 ; y

′′ − 2y3 + 2xy − 1 = 0; no decomposition
found.

6.9 a = b = c = d = 1, Symmetry class S2
0 ; y

′′ + y3 + (x + 1)y + 1 = 0; no
decomposition found.

6.10 Symmetry classS2
1 ; y

′′+y3+y2+y+1 = 0; z ≡ y′±√
2C + 4y4 − 4y3 = 0.

6.11 a = 1, y′′ + x2y3 = 0; no decomposition found.
6.12 Symmetry class S2

2,2; y
′′ + 2y3 = 0; z ≡ y′ ± √

2C − y4 = 0.

6.21 Symmetry class S2
1 ; y

′′ − 3y′ − y2 − 2y = 0; no decomposition found.
6.23 Symmetry class S2

1 ; y
′′ + 5y′ − 6y2 + 6y = 0; no decomposition found.

6.24 a = 1, Symmetry class S2
2,2; y

′′ + 3y′ − 2y3 + 2y = 0; z ≡ y′ ± y2 + y = 0.

6.26 a = 2, b = 1, n = 2 Symmetry class S2
1 ; y

′′ + y′ + y2 + 3
4 y = 0; no

decomposition found.
6.27 a = b = 1, ν = 2, n = 2, Symmetry class S2

0 ; y
′′ + y′ + x2y2 = 0; no

decomposition found.
6.30 Symmetry class S2

2,2; y
′′ + yy′ − y3 = 0; z ≡ y′ − 1

2 y
2 = 0; z ≡ y′ + y2 = 0.

6.31 a = 1, Symmetry class S2
1 ; y

′′ + yy′ − y3 − y = 0; z ≡ y′ − 1
2 y

2 − 1
2 = 0,

z ≡ y′ + y2 + 1 = 0.
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6.32 a = 1, Symmetry class S2
2,2; y

′′ + yy′ − y3 + 3y′ − y3 + y2 + 2y = 0;

z ≡ y′ − 1
2 y

2 + y = 0, z ≡ y′ + y2 + y = 0

6.33 f (x) = x , Symmetry classS2
2,2; y

′′+yy′−y3+3xy′−y3+xy2+(2x2+1)y =
0;
z ≡ y′ − 1

2 y
2 + xy = 0, z ≡ y′ + y2 + xy = 0.

6.34 f (x) = x , Symmetry class S2
0 ; y

′′ + 2yy′ + xy′ + y = 0; no decomposition
found.

6.35 f (x) = x , Symmetry class S2
1 ; y

′′ + yy′ − 3
2x y

′ − y3− 1
2x y

2− x3 − 1
x2

y = 0;

z ≡ y′ − 1
2 y

2y − 1
2 x = 0, z ≡ y′ + y2 − 1

2x y + x = 0.

6.36 a = b = 1, f (x) = x , Symmetry class S2
0 ; y

′′ + yy′ + xy′ + 3x2 + 3
x y′ −

y3 − x2 + 1
x y2 + x4 + 3x2 + 3

x2
+ x2 = 0; no decomposition found.

6.37 f (x) = x , g(x) = 0, Symmetry class S2
0 ; y

′′ + 2yy′ + xy′ + xy2 = 0;

z ≡ y′ + y2 + C exp
(
−1
2 x

2
)

= 0.

6.38 f (x) = g(x) = x , Symmetry class S2
8 ; y

′′ + 3yy′ + y3 + xy + x = 0; no
decomposition found.

6.39 f (x) = x , Symmetry class S2
8 ; y′′ + 3yy′2 + xy′ + y3 + xy2 = 0;

z ≡ y′ + y2 −
2 exp

(
−1

2
x2

)
y

√
2πerf

(
x√
2

)
− 2C

= 0.

6.40 a = b = 1, Symmetry class S2
2,2; y′′ − 3yy′ − 3y2 − 4y − 1 = 0;

z ≡ y′ − 3
2 y

2 − 2y + C exp (−2x) − 1
2 = 0.

6.41 f (x) = x , Symmetry class S2
8 ; y′′ + 3yy′2 + xy′ + y3 + xy2 = 0;

z ≡ y′ − y2 −
2i exp

(
−1

2
x2

)
y

√
2πerf

(
i x√
2

)
+ 2C

= 0.

6.42 a = 1, Symmetry class S2
1 ; y

′′ − 2yy′ − 1 = 0; z ≡ y′ − y2 − x + C = 0.
6.43 a = 2, b = 1, Symmetry class S2

2,2; y′′ + 2yy′ + y3;
z ≡ y′ + r(y) = 0, r implicit function of x and y.

6.44 f (y) = y, f (x) = x , Symmetry class S2
0 ; y′′ + yy′ + x ;

z ≡ y′ + 1
2 y

2 + C + 1
2 x

2 = 0.

6.45 a = b = 1, Symmetry class S2
1 ; y′′ + y′2 + y = 0;

z ≡ y′ ± exp (−y)

√(
y − 1

2

)
exp (2y) − Ci = 0.

6.46 a = b = c = 1, Symmetry class S2
1 ; y

′′+ yy′2+ y′+ y = 0; no decomposition
found.

6.47 Symmetry class S2
1 ; y

′′ + y′2 + y′ + y = 0; no decomposition found.
6.50 Symmetry class S2

1 ; y
′′ + yy′2 + y = 0;

z ≡ y′ + ± exp
(
−1
2 y

2
)√

exp (y2) − Ci = 0.
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6.51 f (y) = y, g(x) = x , Symmetry class S2
8 ; y

′′ + yy′2 + xy′ = 0;

z ≡ y′ + exp
(
1
2 x

2 + 1
2 y

2
)

= 0.

6.52 Symmetry class S2
8 ; yy

′′ − y′2 + xyy′ + xy2 = 0;

z ≡ y′ +
(
1 + C exp

(
−1
2 x

2
))

y = 0.

6.56 a = 1, Symmetry class S2
1 ; y

′′ + yy′4 + 2yy′2 + y = 0;

z ≡ y′ ±
√
y2 − 2C√

2C − y2 − 1
= 0.

6.57 a = 1, ν = 3, Symmetry class S2
3,2; y

′′ − x3y′3 +3x2yy′2 −3xy2y′ + y3 = 0;

z ≡ y′ ± 1
x
√
C − x2

= 0.

6.58 a = b = c = k = 1, Symmetry class S2
1 ; y

′′ − xyy′ = 0; z ≡ y′ = 0.
6.60 a = 1, Symmetry class S2

2,1; y
′′2 − y′2 − 1 = 0;

z ≡ y′ − 1
2
exp (2C) − exp (2x)

exp (x + C)
= 0,

z ≡ y′ ± √
(y − C)2 − 1 = 0.

6.63 a = 1, Symmetry class S2
3,1; y

′′2 − y′6 − 3y′4 − 3y′2 − 1 = 0;

z ≡ y′ − C − x − 1√
2(C − 1)x − (C − x)2

.

6.71 a = 1, Symmetry class S2
2,2; y

′′ + 9
8 y

′4 = 0; z ≡ y′ ± 2/3√
y − C

= 0.

6.72 R(y′) = y′2, Symmetry class S2
0 ; y

′′ + y′2+ xy = 0; no decomposition found.
6.73 n = 2, 3, 4, xy′′ + 2y′ − xyn = 0, Symmetry class S2

1 ; no decomposition
found.

6.74 a = 1, ν = 1, n = 2, xy′′ + 2y′ + xy2 = 0, Symmetry class S2
1 ; no decompo-

sition found.
6.78 Symmetry class S2

2,2; y
′′ + 1

x yy
′ − 1

x y
′ = 0; z ≡ y′ − 1

2x y
2 − 2

x y + C
x = 0.

6.79 Symmetry class S2
1 ; y

′′ − xy′2 + 2
x y

′ + 1
x y

2 = 0; z ≡ y′ − 1
x y − 1

x2
= 0,

z ≡ y′ + 1
x y = 0,

z ≡ yy′ − 1

2

log (x) + 1

x log (x)
+ 1

x
y2 − 1

2

log (x) + 1

x2 log (x)
y − 1

2x3 log (x)
= 0.

6.80 Symmetry class S2
3,2; y

′′ + xy′2 − 2yy′ + 1
x y

2 = 0;

z ≡ y′ − 1
x y − 1

x(x + C)
= 0.

6.81 Symmetry class S2
3,2; y

′′ + 1
2x y

′3 + 1
2x y

′ = 0; z ≡ y′ ± 1√
Cx − 1

= 0.

6.86 a = 1, b = 0, Symmetry class S2
2,2; y

′′ + y′2 + −2
x yy

′ + 1
x2

y2 = 0;

z ≡ y′ − 1
x y − 1

x(log (x) − C)
= 0.

6.87 a = 1, b = 0, Symmetry class S2
1 ; y

′′ + 1
x2

yy′ = 0; z ≡ y′ = 0.
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6.89 Symmetry class S2
1 ; y

′′ + 1
x2 + 1

y′2 + 1
x2 + 1

= 0; z ≡ y′ + Cx − 1
C + x = 0.

6.90 Symmetry class S2
1 ; y

′′ − 1
4 x

2y′2 + 1
x2

y = 0; no decomposition found.

6.91 a = 1, Symmetry class S2
1 ; y

′′ + + 1
9x2

y3 + 2
9x2

y = 0; no decomposition

found.
6.93 a = 1, Symmetry class S2

8 ; y
′′ − 1

x y
′2 + 2

x2
yy′ − 1

x2
y2 = 0;

z ≡ y′ − 1
x y − C

x + C = 0.

6.95 Symmetry class S2
0 ; y′′ + yy′ +

9

2
x2

x3 − 1

4

−
x3 − 3

2
x2 − 1

4

x3 − 1

4

+
1

8
x

x3 − 1

4

+

1

8

x3 − 1

4

= 0; no decomposition found.

6.97 Symmetry classS2
2,2; y

′′− 2
x3

yy′− 1
x y

′+ 4
x2

y2 = 0; z ≡ y′− 1
x3

y2+Cx = 0,

z ≡ y′ − 2
x y = 0.

6.98 Symmetry class S2
1 ; y

′′ − 1
x2

y′2 − 1
x y

′ + 4
x4

y2; z ≡ y′ + 2
x y + 2x = 0.

6.99 Symmetry class S2
8 ; y

′′ + 1
x y

′3 − 3
x2

yy′2 + 3
x2

y2y′ − 1
x4

y3 = 0;

z ≡ y′ − 1
x y ± 1√

Cx2 − 1
= 0.

6.100 Symmetry class S2
1 ;

√
x y′′ − y2/3 = 0; no decomposition found.

6.104 Symmetry class S2
2,2; yy

′′ + 1 = 0; z ≡ y′ ± √
C − 2 log (y) = 0.

6.105 a = 1, Symmetry class S2
1 ; yy

′′ − x = 0; no decomposition found.
6.106 a = 1, Symmetry class S2

1 ; yy
′′ − x2 = 0; no decomposition found.

6.107 a = 1, Symmetry class S2
8 ; yy

′′ + y′2 − 1 = 0; z ≡ yy′ − 1
2C − x = 0,

z ≡ yy′ − 1
2x y

2 + C − x2
2x = 0.

6.108 a = b = 1, Symmetry class S2
0 ; yy

′′ + y2 − x + 1 = 0; no decomposition
found.

6.109 Symmetry class S2
2,2; yy

′′ + y′2 − y′ = 0; z ≡ yy′ − y + C = 0.

6.110 Symmetry class S2
2,2; yy

′′ − y′2 + 1 = 0; z ≡ y′ ± √
Cy2 + 1 = 0.

6.111 Symmetry class S2
2,2; yy

′′ − y′2 − 1 = 0; z ≡ y′ ± √
Cy2 − 1 = 0.

6.114 f (x) = x , Symmetry class unknown; yy′′ − y′2 − y′ + xy3 − 1
x2

y2 = 0; no

decomposition found.
6.115 f (x) = x , Symmetry class unknown; yy′′ − y′2 + xy′ − y3 − y = 0; no

decomposition found.
6.116 f (x) = x , Symmetry class S2

0 ; yy
′′ − y′2 + y′ − y4 + xy3 = 0;

z ≡ y′ ± y2 ∓ xy − 1 = 0.
6.117 a = b = 1, Symmetry class S2

8 ; yy
′′ − y′2 + yy′ + y2 = 0;

z ≡ y′ + (1 + C exp (−x))y = 0.
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6.122 f (x) = g(x) = x , Symmetry class S2
8 ; yy

′′ − y′2 + xyy′ + xy2 = 0;

z ≡ y′ + (
1 + C exp (−1

2 x
2)

)
y = 0.

6.123 f (x) = g(x) = x , Symmetry class unknown; yy′′−y′2+xy2y′+xy′+y3−y =
0; z ≡ y′ + xy2 + Cy − x = 0.

6.124 Symmetry class S2
8 ; yy

′′ − 3y′2 + 3yy′ − y2 = 0;

z ≡ y′ − 1

2

C exp (x) + 2

C exp (x) + 1
y = 0, z ≡ y′ + Cy3 − √

C
√
Cy2 − 1y2 − y = 0.

6.125 a = 1, Symmetry class S2
8 ; yy

′′ − y′2 = 0; z ≡ y′ + Cy = 0;
6.126 Symmetry class S2

8 ; yy
′′ + y′2 + 1 = 0;

z ≡ yy′ + x + C = 0, z ≡ yy′ − 1
2x y

2 + 1
2 x = 0.

6.127 a = b = 1, Symmetry class S2
2,2; yy

′′ + y′2 + y3 = 0;

z ≡ yy′ +
√
C − 2

5 y
5 = 0.

6.128 a = −1, b = c = d = 1, Symmetry class S2
8 ; yy

′′ − y′2 + yy′ + 2y2 = 0;
z ≡ y′ + (2 + C exp (−x))y = 0.

6.129 a = 1, f (x) = x , g(x) = 1, Symmetry class S2
8 ; yy

′′ + y′2 + xyy′ + y2 = 0;

z ≡ y′ − 1

2

exp

(
1

2
x2

)
y

x2
(∫

exp

(
1

2
x2

)
dx

x2
+ C

) − 1

2
x(x2 − 1)y = 0.

6.130 a = b = c = 1, Symmetry classS2
2,2; yy

′′+y′2+y2y′+y4; z ≡ y′+r(y) = 0,
r implicit function of x and y.

6.131 a = −1, f (x) = 1, Symmetry class S2
1 ;

y′′ − 2

y
y′2 − xyy′ − x2y3 + y2 = 0; z ≡ y′ + xy2 + 1

x + C
y = 0.

6.133 Symmetry class S2
3,2; (y + x)y′′ + y′2 − y′ = 0; z ≡ y′ − 1

2
x + y
x + C = 0,

z ≡ yy′ + xy′ − 2y + C = 0.

6.134 Symmetry class S2
8 ; (y − x)y′′ − 2y′2 − 2y′ = 0; z ≡ y′ + y + C

x + C = 0,

z ≡ y′ + y(y + C)
x(x + C)

= 0.

6.135 Symmetry class S2
8 ; (y − x)y′′ + y′3 + y′2 + y′ + 1 = 0;

z ≡ y′ + x + C

y + C
= 0, z ≡ y′ + 1 = 0, z ≡ y′ + θ = 0, θ2 + 1 = 0.

6.136 Symmetry class S2
2,2; (y − x)y′′ + y′ = 0; z ≡ y′ + x − y

x + C = 0.

6.137 Symmetry class S2
2,2; yy

′′ + 1
2 y

′2 + 1
2 = 0; z ≡ y′ ±

√
C − y√

y
= 0.
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6.138 a = 1, Symmetry class S2
8 ; yy

′′ − 1
2 y

′2 + 1
2 = 0; z ≡ y′ − 2

x + C y ± 1 = 0.

6.139 a = 0, f (x) = 1
x2

, Symmetry class S2
8 ; yy

′′ − 1
2 y

′2 + 1
2x2

y2 = 0;

z ≡ y′ − log (x)C + 1
x(log (x) + C)

= 0.

6.140 a = b = 1, Symmetry class S2
2,2; yy

′′ − 1
2 y

′2 + 1
2 y

3 + 1
2 y

2 = 0;

z ≡ y′ ±
√
Cy − 1

2 y
3 − y2 = 0.

6.141 Symmetry classS2
1 ; yy

′′− 1
2 y

′2−4y3−2y2 = 0; z ≡ y′±√
Cy + 4y3 + 4y2 =

0.
6.142 Symmetry class S2

0 ; yy
′′ − 1

2 y
′2 − 4y3 − 2xy2 = 0; no decomposition found.

6.143 Symmetry class S2
1 ; yy

′′ − 1
2 y

′2 − 3
2 y

4 = 0; z ≡ y′ ± √
y(y3 + C) = 0.

6.146 Symmetry class S2
2,2; yy

′′ − 1
2 y

′2 − 3
2 y

4 = 0; z ≡ y′ ± √
y(y3 + C) = 0.

6.147 a = b = 1, Symmetry class unknown; yy′′ − 1
2 y

′2 − 3
2 y

4 − 4xy3 − (2x2 +
2))y2 + 1

2 = 0; no decomposition found.

6.148 Symmetry class unknown; yy′′ − 1
2 y

′2 + 2y2y′ + 1
2 xy

2 + 1
2 = 0; no decom-

position found.
6.149 Symmetry class S2

0 ; yy
′′ − 1

2 y
′2 + 3

2 xyy
′ − 4y3 + (x2 + 1)y2 = 0; no decom-

position found.
6.150 f (x) = x , Symmetry class S2

8 ; yy
′′ − 3

2 y
′2 = 0; z ≡ y′ + 2

x + C y = 0,

z ≡ y′ + Cy
3
2 = 0.

6.151 f (x) = x , Symmetry class S2
8 ; yy

′′ − 3
2 y

′2 − 2y2 = 0;
z ≡ y′ − 2 tan (x + C)y = 0.

6.152 f (x) = x , Symmetry class S2
8 ; yy

′′ − 3
2 y

′2 + 1
2 xy

2 = 0; no decomposition
found.

6.153 a = 1, Symmetry class S2
1 ; yy

′′ − 3y′2 + 1
2 y

5 + 1
2 y

2 = 0;

z ≡ y′ ±
√
y√

C − y
= 0.

6.154 Symmetry class S2
2,2; yy

′′− 1
2 y

′4− 1
2 y

′2 = 0; z ≡ y′±
√
Cy4 + y3 + 1

4 y = 0.

6.155 Symmetry class S2
8 ; (y − 1)y′′ + 1

2 y
′2 + 1

2 = 0; z ≡ y′ ±
√
C − y√
y − 1

= 0.

6.156 a = b = c = 1, Symmetry class S2
1 ; yy

′′ − 2
3d f (y, x)

2 − 1
3 (x2 + x + 1) = 0;

no decomposition found.

6.157 Symmetry classS2
8 ; yy

′′−5
3 y

′2 = 0; z ≡ y′+ 3/2
x + C y = 0, z ≡ y′+Cy

5
3 = 0.

6.158 Symmetry class S2
3,2; yy

′′ − 3
4 y

′2 + y = 0; z ≡ y′ ± √
y
√
C

√
y + 4 = 0.

6.159 Symmetry class S2
2,2; yy

′′ − 3
4 y

′2 −3y3 = 0; z ≡ y′ ±√
y
√
C

√
y + 4y2 = 0.

6.160 Symmetry class S2
1 ; yy

′′ − 3
4 y

′2 + 1
4 y

3 + 1
4 y

2 + 1
4 y = 0;

z ≡ y′ ±
√
Cy

√
y − 1

3 y
3 − y2 + y = 0.

6.162 Symmetry class S2
3,2; yy

′′ − 5
4 y

′2 + 1
4 y

3 = 0; z ≡ y′ + ±y
√
C

√
y − y = 0.
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6.163 Symmetry class S2
3,2; yy

′′ − 5
4 y

′2 + 2
3 y

3 = 0; z ≡ y′ ± y
√
C

√
y − 8

3 y = 0.

6.164 Symmetry class S2
8 ;

yy′′ − n−1

n
y′2 = 0; z ≡ y′ − n

x + C
y = 0, z ≡ y′ + C exp

( − 1

n
log (y)

)
y = 0.

6.165 Symmetry class S2
8 ; yy

′′ + y′2 + y4 + y3 + y2 + y + 1 = 0;
z ≡ yy′ ±

√
C − 1

3 y
6 − 2

5 y
5 − 1

2 y
4 − 2

3 y
3 − y2 = 0.

6.167 a = −1, f (x) = x , Symmetry class S2
1 ; yy

′′ −2y′2 − xy2y′ − x2y4 + y3 = 0;

z ≡ y′ + xy2 + 1
x + C = 0.

6.168 a = b = c = 1, Symmetry class S2
8 ;

(y + 1)y′′ + y′2 = 0; z ≡ y′ − 1/2

x + C
(y + 1) = 0, z ≡ yy′ + y′ + C = 0.

6.169 Symmetry class S2
8 ; yy

′′ + y′2 − 1
x yy

′ = 0; z ≡ y′ − x
C + x2

y,

z ≡ yy′ + Cx = 0.
6.170 Symmetry class S2

8 ; yy
′′ + y′2 + 2

x yy
′ + 1 = 0;

z ≡ yy′ + 1
x = 0, z ≡ yy′ + 1

2x + 1
2 x + C

x , z ≡ yy′ + 1
3 x + C

x2
.

6.172 Symmetry class S2
2,2; yy

′′ − y′2 + 1
x yy

′ + y3 = 0; no decomposition found.

6.173 a = 1, Symmetry classS2
8 ; yy

′′+2y′2+ 1
x yy

′ = 0; z ≡ y′− 1/3
x(log (x) − C)

y.

6.174 Symmetry class S2
2,2; yy

′′ −2y′2+ 1
x yy

′ + 1
x y

′ = 0; z ≡ y′ + C
x y2− 1

2x = 0.

6.175 Symmetry class S2
8 ; yy

′′ − 2y′2 + 1
x yy

′ = 0; z ≡ y′ + 1
x(log (x) + C)

y = 0.

6.176 Symmetry classS2
8 ; yy

′′+ y′2−4y′2+ 4
x yy

′ = 0; z ≡ y′− 1
x(1 − Cx3)

y = 0.

6.178 Symmetry class S2
8 ; (y + x)y′′ + y′2 − 1

x yy
′ + y′ − 1

x y = 0;
z ≡ yy′ + xy′ + y + Cx = 0.

6.179 Symmetry class S2
8 ; yy

′′ − 1
2 y

′2 + 1
2x yy

′ = 0; z ≡ y′ − 1
x − C

√
x
y = 0.

6.180 Symmetry class S2
8 ;

(y − 1)y′′ − 2y′2 − 2

x
yy′ + 2

x
y′ − 2

x2
y3 − 4

x2
y2 − 2

x2
y = 0;

z ≡ y′ − 2x + C

x(x + C)
y(y − 1) = 0.

6.181 Symmetry class S2
8 ; (y + x)y′′ − y′2 − 2

x yy
′ − 1

x2
y2 = 0;

z ≡ y′ − x − C
x2

y + C
x = 0.
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6.182 a = 1, Symmetry class S2
8 ; (y − x)y′′ − y′2 + 2

x yy
′ − 1

x2
y2 = 0;

z ≡ y′ − x + C
x2

y − C
x = 0.

6.182 a = −1, Symmetry class S2
8 ; (y − x)y′′ + y′2 − 2

x yy
′ + 1

x2
y2 = 0;

z ≡ y′ −
1

2
C + x

x(x + C)
y −

1

2
C

C + x = 0.

6.183 Symmetry class S2
3,2; yy

′′ − 1
2 y

′2 + 1
2x2

y2 − 1
2 = 0;

z ≡ y′ − log (x) + C + 2
x(log (x) + C)

y + θ = 0, θ2 + 1 = 0.

6.184 Symmetry class S2
8 ; yy

′′ + y′2 + 1
x yy

′ + 1
x2

y2 = 0;

z ≡ y′ − θ exp (4θ) + 2C
x(exp (4θ) + 4Cθ)

= 0, θ2 + 1
2 = 0.

6.185 a = 1, Symmetry class S2
8 ; yy

′′ − y′2 + 2
x yy

′ + x + 2
x(x + 1)2

y2 = 0;

z ≡ y′ + x2 + Cx + C
x2(x + 1)

= 0.

6.186 Symmetry class S2
8 ; yy

′′ − 1
2 y

′2 + 3/2x2

x2 − 1
yy′ − 3/8x

x3 − 1
y2 = 0; no decompo-

sition found.
6.187 f (x) = g(x) = h(x) = k(x) = 1, Symmetry class S2

8 ;

yy′′ + y′2 + yy′ + 1

x
y2 = 0; I1 ≡

∫
exdx

x(x − 1)2
, I2 ≡

∫
exdx

(x − 1)2
,

z ≡ y′ −
1

2
(x − 2)ex + (x − 2)(x2 − 4x + 2)(C + 2I1 − 1

2
I2)

(x − 2)ex + x(x − 2)2(2C + 4I1 − I2)
= 0.

6.188 a = 1, Symmetry class S2
2,2; y

2y′′ − 1 = 0; z ≡ y′ +
√
2(Cy − 1)

y = 0.

6.189 a = 1, Symmetry class S2
1 ; y

2y′′ + yy′2 + x = 0; z ≡ yy′ − y + x = 0.
6.190 a = 1, Symmetry class S2

1 ; y
2y′′ + yy′2− x−1 = 0; z ≡ yy′ + y+ x+1 = 0.

6.191 Symmetry class S2
8 ; (y

2 + 1)y′′ − 2yy′2 + y′2 = 0;
z ≡ y′ − y2 + 1

x + C = 0, z ≡ y′ + C(y2 + 1) exp (−arctan(y)) = 0.

6.192 Symmetry class S2
8 ; (y

2 + 1)y′′ − 3yy′2 = 0;

z ≡ y′ − y3 + y
x + C = 0, z ≡ y′ + C(y2 + 1)

3
2 = 0.

6.193 Symmetry class S2
8 ; (y

2 + x)y′′ + 2y2y′3 − 2xy′3 + 4yy′2 + y′ = 0;
z ≡ y′ + (y + 2x2)C + 2x .

6.194 Symmetry class S2
8 ; (y

2 + x2)y′′ − xy′3 + yy′2 − xy′ + y = 0;

z ≡ y′ − Cy − x
Cx + y = 0.

6.195 Symmetry class S2
8 ; (y

2 + x2)y′′ − 2xy′3 + 2yy′2 − 2xy′ + 2y = 0;

z ≡ y′ + C(y2 − x2) + 2xy
y2 − x2 − 2Cxy

.
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6.196 f (x) = x , Symmetry class S2
8 ; y

′′ − 1
2

2y − 1
y(y − 1) y

′2 + 1
2 xy

′ = 0;

z ≡ y′ + C exp
( − 1

4 x
2
)√

y(y − 1) = 0.

6.197 f (y) = 0, Symmetry class S2
8 ; y

2y′′ − yy′′ − 3
2 yy

′2 + 2
2 y

′2 = 0;
z ≡ y′ + √

y(y − 1)C = 0.

6.198 f (y) = 0, Symmetry class unknown; z ≡ y′ + (y − 1)
2
3 y

2
3C = 0.

6.200 f (y) = 0, Symmetry class S2
8 ; y

2y′′ − yy′′ − 4
3 yy

′2 + 2
2 y

′2 = 0;

z ≡ y′ + (y − 1)
2
3 y

2
3C = 0.

6.201 Symmetry class S2
8 ; (y − 1)y′′ − 6yy′2 + 3y′2 = 0;

z ≡ y′ + C(y − 1)3 exp (6y) = 0.
6.202 a = b = c = 1, f (y) = 0, Symmetry class S2

8 ; (y
2 − y)y′′ + yy′2 + y′2 = 0;

z ≡ y2y′ − 2yy′ + y′ + Cy = 0.
6.204 a = 1, b = −1, f (x) = x , Symmetry class S2

8 ;

y2y′′ + 1

2
xy2 = 1; z ≡ y′ − 2 exp (1/2x2)

√
2π ierf

i x√
2

+ 2C
(y − 1) = 0.

6.205 a = 1, Symmetry class S2
8 ; y

2y′′ − 1
x = 0; no decomposition found.

6.206 a = 1, Symmetry class S2
8 ;

(y2 − 1)y′′ − yy′2 + x

x2 − 1
y2y′ − x

x2 − 1
y′ = 0; z ≡ y′ + C

√
y2 − 1√
x2 − 1

= 0.

6.208 Symmetry class S2
8 ;

y2y′′ + (y + x)y′3 − 3

x
y2y′2 − 3yy′2 + 3

x2
y3y′ + 3

x
y2y′ − 1

x3
y4− 1

x2
y3 = 0;

z ≡ y′ − 1

x
y = 0.

6.209 Symmetry class S2
3,2; y

3y′′ − 1 = 0; z ≡ yy′ ± √
Cy2 − 1 = 0.

6.210 a = b = c = 1, Symmetry class S2
8 . y

3y′′ + 1
2 y

2y′2 − 1
2 x

2 − 1
2 x − 1

2 = 0;
no decomposition found.

6.211 Symmetry class S2
0 ; y

3y′′ + 1
2 y

3 − 1
2 xy = 0; no decomposition found.

6.212 Symmetry class S2
0 ; y

3y′′ + yy′′ − 3y2y′2 + y′2 = 0; z ≡ y′ − 1
2
y3 + y
x + C ;

z ≡ yy′ + (y2 + 1)2C = 0.
6.214 g2 = g3 = 1, Symmetry class S2

8 ; y
3y′′ − 1

4 yy
′′ − 1

4 y
′′ − 3

2 y
2y′2 + 1

8 y
′2 = 0;

z ≡ y′ + 2C
√
y3 − 1/4y − 1/4 = 0.

6.219 a = 1, b = c = 0, d = 1, Symmetry classS2
1 ; y

4y′′+2x2y2y′′+x4y′′+y = 0;
no decomposition found.
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6.220 a = 1, Symmetry class S2
2,2; yy

′′2 − 1 = 0; z ≡ y′ + 2
√√

y + 1
2C .

6.224 f (y) = g(y) = y, Symmetry class S2
2,2; yy

′′ + y′2 + y = 0;

z ≡ yy′ ±
√
C − 2

3 y
3 = 0.

6.226 Symmetry class S2
2,1; y

′y′′ − x2yy′ − xy2 = 0; z ≡ y′2 − x2y2 + C = 0.

6.227 Symmetry class S2
2,1; (xy

′ − y)y′′ + 4y′2 = 0;

z ≡ y + x log (y′) + C − 4
log (y′) + C

−
√
y′

log (y′) + C
.

6.231 Symmetry class S2
1 ; y

2y′y′′ + 1
2 x

2y′′ + yy′3 + 3
2 xy

′ + 1
2 y = 0;

z ≡ y′2 + x2

y2
y′ + x

y + C = 0.

6.232 Symmetry class S2
2,1; y

′2y′′ + y2y′′ + y3 = 0;

z ≡ y′ −
1

2

√
3 −

√
tan (

√
3x + C)

2 + 3

4
tan (

√
3x + C)

y = 0.

6.235 f (y′) = y′, g(y) = y, h(x) = x , Symmetry class S2
0 ; y

′y′′ + yy′ + x = 0;
z ≡ y′2 + y2 + x2 + C = 0.

6.236 a = 1, b = 1, Symmetry classS2
2,2; y

′′2−y−1; z ≡ y′± 2√
3

√
(y + 1)3/2 + C .

6.238 Symmetry class S2
0 ; y

′′2− 2x
x2+1

y′y′′−
1

2
x2

x2+1
y′′+ 1

x2 + 1
(y′2+ xy′ − y) = 0;

z ≡ y′2 − (2C − 1
2 x

3)y′ − x2y + C2x2 + C2 + 1
2Cx3,

z ≡ y′2 − (4Cx − x)y′ − y + 4C2x2 + 4C2 − Cx2.
6.239 Symmetry class S2

2,1; y
′′2 − 2

x y
′y′′ − 2

3x2
yy′′ + 4

3x2
y′2 = 0;

z ≡ y′ − C + 2x
C2 + Cx + x2

y = 0.

6.240 Symmetry class S2
1 ; y

′′2 −
4x − 2

3

x2 − 2

9

y′y′′ −
2

3

x3 − 2

9
x2

yy′′ + 4

x2 − 2

9
x
y′2 = 0;

z ≡ y′2− 6
x yy

′+ 2C2(3x − 1)
x2

y′+ 9
x2

y2− 2C2(9x − 1)
x3

y+C4(9x − 2)
x3

= 0,

z ≡ y′2 − C2x(6x − 1)y′ + C2y + C4x3(9x − 2) = 0.
6.243 a = b = 1, Symmetry class S2

1 ; (y2 − 1)y′′2 − 2yy′2y′′ + (y2 − 1)y′2 = 0;
z ≡ y′ + Cy + √

C2 − 1 = 0.
6.244 Symmetry class S2

3,1; (x
2yy′′ − x2y′2 + y2)2 − 4xy(xy′ − y)3 = 0;

z ≡ y′ −
(
1
x + 1

(x + C)2

)
y = 0.
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Third-order equations of chapter 7

7.4 a = 1, Symmetry class S3
2,2; y

′′′ + yy′′ = 0; no decomposition found.

7.8 Symmetry class S3
3,7; y

2y′′′ − 9
2 yy

′y′′ + 15
4 y′3 = 0;

z ≡ y′ + C1 + x
1

4
x2 + 1

2
C1x + C2

= 0.

7.9 Symmetry class S3
3,7; y

2y′′′ − 5yy′y′′ + 40
9 y′3 = 0;

z ≡ y′ + C1 + x
1

3
x2 + 2

3
C1x + C2

= 0.

7.10 Symmetry class S3
3,6; y

′y′′′ − 3
2 y

′′2 = 0; z ≡ y′ +
C1x + C2 + 1

2

C1x + C2 − 1

2

y.
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