2,152 research outputs found

    Toward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans

    Get PDF
    In this paper, we investigate the coupled interaction between a new short intake design with a modern fan in a high-bypass ratio civil engine, specifically under the off-design condition of high incidence. The interaction is expected to be much more significant than that on a conventional intake. The performance of both the intake-alone and rotor-alone configurations are examined under isolation. Subsequently, a comprehensive understanding on the two-way interaction between intake and fan is presented. This includes the effect of fan on intake angles of attack (AoA) tolerance (FoI) and the effect of circumferential and radial flow distortion induced by the intake on the fan performance (IoF). In the FoI scenario, the rotor effectively redistributes the mass flow at the fan-face. The AoA tolerance of the short-intake design has increased by ≈4 deg when compared with the intake-alone configuration. Dynamic nature of distortion due to shock unsteadiness has been quantified. ST plots and power spectral density (PSD) of pressure fluctuations show the existence of a spectral gap between the shock unsteadiness and blade passing, with almost an order of magnitude difference in the corresponding frequencies. In the IoF scenario, both the “large” (O(360 deg)) and “small” scale distortion (O(10–60 deg)) induced by the intake results in a non-uniform inflow to the rotor. Sector analysis reveals a substantial variation in the local operating condition of the fan as opposed to its steady characteristic. Streamline curvature, upwash, and wake thickening are identified to be the three key factors affecting the fan performance. These underlying mechanisms are discussed in detail to provide further insights into the physical understanding of the fan-intake interaction. In addition to the shock-induced separation on the intake lip, the current study shows that shorter intakes are much more prone to the upwash effect at higher AoA. Insufficient flow straightening along the engine axis is reconfirmed to be one of the limiting factors for the short-intake design

    On the occurrence of competitive adsorption at the platinum-acetonitrile interface by using surface-enhanced Raman spectroscopy

    Get PDF
    Surface-enhanced Raman scattering (SERS) from the platinum electrode-acetonitrile interface in the presence of iodide, the lithium cation, water, and pyridine was analyzed as a function of applied potential. It was found that the typical Raman band of cyanide species by the dissociation of the solvent acetonitrile upon adsorption onto highly roughened platinum electrode surfaces was detectable for all of the systems that were studied. However, the onset potential of the dissociation reaction of acetontrile differed for the four systems. We assume that competitive adsorption may exist between each of the above four species and the solvent acetonitrile molecule, especially at the dissociation reaction-active sites of the Pt surface. This competitive adsorption therefore significantly inhibits the decomposition reaction of acetonitrile. The interactions of these adsorbates with Pt are assumed to weaken in the sequence pyridine > I- > water approximate to Li+ on the basis of the observations of different negative shifts of the onset potential of acetonitrile decomposition. For the system with water or iodide, double-band character for the CN band was also detected. It is assumed to be due to the existence of two types of adsorbed ion pairs at the Pt surface: CN-...CH3CN and CN-...Li+/Na+

    MnSb2O6: a polar magnet with a chiral crystal structure

    Get PDF
    Structural and magnetic chiralities are found to coexist in a small group of materials in which they produce intriguing phenomenologies such as the recently discovered Skyrmion phases. Here, we describe a previously unknown manifestation of this interplay in MnSb2O6, a trigonal oxide with a chiral crystal structure. Unlike all other known cases, the MnSb2O6 magnetic structure is based on corotating cycloids rather than helices. The coupling to the structural chirality is provided by a magnetic axial vector, related to the so-called vector chirality. We show that this unique arrangement is the magnetic ground state of the symmetric-exchange Hamiltonian, based on ab initio theoretical calculations of the Heisenberg exchange interactions, and is stabilized by out-of-plane anisotropy. MnSb2O6 is predicted to be multiferroic with a unique ferroelectric switching mechanism.open4

    Solutions of Several Coupled Discrete Models in terms of Lame Polynomials of Order One and Two

    Full text link
    Coupled discrete models abound in several areas of physics. Here we provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lame polynomials of order one and two. Some of the models discussed are (i) coupled Salerno model, (ii) coupled Ablowitz-Ladik model, (iii) coupled saturated discrete nonlinear Schrodinger equation, (iv) coupled phi4 model, and (v) coupled phi6 model. Furthermore, we show that most of these coupled models in fact also possess an even broader class of exact solutions.Comment: 31 pages, to appear in Pramana (Journal of Physics) 201

    Quantum anti-Zeno effect without wave function reduction

    Full text link
    We study the measurement-induced enhancement of the spontaneous decay (called quantum anti-Zeno effect) for a two-level subsystem, where measurements are treated as couplings between the excited state and an auxiliary state rather than the von Neumann's wave function reduction. The photon radiated in a fast decay of the atom, from the auxiliary state to the excited state, triggers a quasi-measurement, as opposed to a projection measurement. Our use of the term "quasi-measurement" refers to a "coupling-based measurement". Such frequent quasi-measurements result in an exponential decay of the survival probability of atomic initial state with a photon emission following each quasi-measurement. Our calculations show that the effective decay rate is of the same form as the one based on projection measurements. What is more important, the survival probability of the atomic initial state which is obtained by tracing over all the photon states is equivalent to the survival probability of the atomic initial state with a photon emission following each quasi-measurement to the order under consideration. That is because the contributions from those states with photon number less than the number of quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure

    Investigation of the Hemodynamic Effect of Stent Wires on Renal Arteries in Patients with Abdominal Aortic Aneurysms Treated with Suprarenal Stent-Grafts

    Get PDF
    The purpose of the study was to investigate the hemodynamic effect of stent struts (wires) on renal arteries in patients with abdominal aortic aneurysms (AAAs) treated with suprarenal stent-grafts. Two sample patients with AAA undergoing multislice CT angiography pre- and postsuprarenal fixation of stent-grafts were selected for inclusion in the study. Eight juxtarenal models focusing on the renal arteries were generated from the multislice CT datasets. Four types of configurations of stent wires crossing the renal artery ostium were simulated in the segmented aorta models: a single wire crossing centrally, a single wire crossing peripherally, a V-shaped wire crossing centrally, and multiple wires crossing peripherally. The blood flow pattern, flow velocity, wall pressure, and wall shear stress at the renal arteries pre- and post-stent-grafting were analyzed and compared using a two-way fluid structure interaction analysis. The stent wire thickness was simulated with a diameter of 0.4, 1.0, and 2.0 mm, and hemodynamic analysis was performed at different cardiac cycles. The interference of stent wires with renal blood flow was mainly determined by the thickness of stent wires and the type of configuration of stent wires crossing the renal ostium. The flow velocity was reduced by 20–30% in most of the situations when the stent wire thickness increased to 1.0 and 2.0 mm. Of the four types of configuration, the single wire crossing centrally resulted in the highest reduction of flow velocity, ranging from 21% to 28.9% among three different wire thicknesses. Wall shear stress was also dependent on the wire thickness, which decreased significantly when the wire thickness reached 1.0 and 2.0 mm. In conclusion, our preliminary study showed that the hemodynamic effect of suprarenal stent wires in patients with AAA treated with suprarenal stent-grafts was determined by the thickness of suprarenal stent wires. Research findings in our study are useful for follow-up of patients treated with suprarenal stent-grafts to ensure long-term safety of the suprarenal fixation

    Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types

    Get PDF
    Most human pre-mRNAs are spliced into linear molecules that retain the exon order defined by the genomic sequence. By deep sequencing of RNA from a variety of normal and malignant human cells, we found RNA transcripts from many human genes in which the exons were arranged in a non-canonical order. Statistical estimates and biochemical assays provided strong evidence that a substantial fraction of the spliced transcripts from hundreds of genes are circular RNAs. Our results suggest that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a general feature of the gene expression program in human cells

    Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

    Get PDF
    In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the alpha-th order (1 <= \alpha <= k+1) divided difference of the DG error in the L2-norm is of order k+(3-alpha)/2 when upwind fluxes are used, under the condition that |f'(u)| possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order k+(3-alpha)/2 in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least (3k/2+1)th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order k+1 in the L2-norm for the divided differences of DG errors and thus (2k+1)th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results
    corecore