29 research outputs found
HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C
Mechanical force-induced conformational changes in proteins underpin a variety of physiological functions, typified in muscle contractile machinery. Mutations in the actin-binding protein filamin C (FLNC) are linked to musculoskeletal pathologies characterized by altered biomechanical properties and sometimes aggregates. HspB1, an abundant molecular chaperone, is prevalent in striated muscle where it is phosphorylated in response to cues including mechanical stress. We report the interaction and up-regulation of both proteins in three mouse models of biomechanical stress, with HspB1 being phosphorylated and FLNC being localized to load-bearing sites. We show how phosphorylation leads to increased exposure of the residues surrounding the HspB1 phosphosite, facilitating their binding to a compact multidomain region of FLNC proposed to have mechanosensing functions. Steered unfolding of FLNC reveals that its extension trajectory is modulated by the phosphorylated region of HspB1. This may represent a posttranslationally regulated chaperone-client protection mechanism targeting over-extension during mechanical stress
Heavy and light roles: myosin in the morphogenesis of the heart
Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies
suggest that both myosin heavy-chain and myosin lightchain
proteins are required for a correctly formed heart.
Myosins are structural proteins that are not only expressed
from early stages of heart development, but when mutated
in humans they may give rise to congenital heart defects.
This review will discuss the roles of myosin, specifically
with regards to the developing heart. The expression of
each myosin protein will be described, and the effects that
altering expression has on the heart in embryogenesis in
different animal models will be discussed. The human
molecular genetics of the myosins will also be reviewed
Emergence of Xin Demarcates a Key Innovation in Heart Evolution
The mouse Xin repeat-containing proteins (mXinα and mXinβ) localize to the intercalated disc in the heart. mXinα is able to bundle actin filaments and to interact with β-catenin, suggesting a role in linking the actin cytoskeleton to N-cadherin/β-catenin adhesion. mXinα-null mouse hearts display progressively ultrastructural alterations at the intercalated discs, and develop cardiac hypertrophy and cardiomyopathy with conduction defects. The up-regulation of mXinβ in mXinα-deficient mice suggests a partial compensation for the loss of mXinα. To elucidate the evolutionary relationship between these proteins and to identify the origin of Xin, a phylogenetic analysis was done with 40 vertebrate Xins. Our results show that the ancestral Xin originated prior to the emergence of lamprey and subsequently underwent gene duplication early in the vertebrate lineage. A subsequent teleost-specific genome duplication resulted in most teleosts encoding at least three genes. All Xins contain a highly conserved β-catenin-binding domain within the Xin repeat region. Similar to mouse Xins, chicken, frog and zebrafish Xins also co-localized with β-catenin to structures that appear to be the intercalated disc. A putative DNA-binding domain in the N-terminus of all Xins is strongly conserved, whereas the previously characterized Mena/VASP-binding domain is a derived trait found only in Xinαs from placental mammals. In the C-terminus, Xinαs and Xinβs are more divergent relative to each other but each isoform from mammals shows a high degree of within-isoform sequence identity. This suggests different but conserved functions for mammalian Xinα and Xinβ. Interestingly, the origin of Xin ca. 550 million years ago coincides with the genesis of heart chambers with complete endothelial and myocardial layers. We postulate that the emergence of the Xin paralogs and their functional differentiation may have played a key role in the evolutionary development of the heart
A functional knock-out of titin results in defective myofibril assembly
van der Ven PFM, Bartsch JW, Gautel M, Jockusch H, Furst DO. A functional knock-out of titin results in defective myofibril assembly. JOURNAL OF CELL SCIENCE. 2000;113(8):1405-1414.Titin, also called connectin, is a giant muscle protein that spans the distance from the sarcomeric Z-disc to the M-band. Titin is thought to direct the assembly of sarcomeres and to maintain sarcomeric integrity by interacting with numerous sarcomeric proteins and providing a mechanical linkage. Since severe defects of such an important molecule are likely to result in embryonic lethality, a cell culture model should offer the best practicable tool to probe the cellular functions of titin. The myofibroblast cell line BHK-21/C13 was described to assemble myofibrils in culture. We have now characterized the sub-line BHK-21-Bi, which bears a small deletion within the titin gene. RNA analysis revealed that in this mutant cell line only a small internal portion of the titin mRNA is deleted. However, western blots, immunofluorescence microscopy and immunoprecipitation experiments showed that only the N-terminal, approx. 100 kDa central Z-disc portion of the 3 MDa titin protein is expressed, due to the homozygous deletion in the gene. Most importantly, in BHK-21-Bi cells the formation of thick myosin filaments and the assembly of myofibrils are impaired, although sarcomeric proteins are expressed. Lack of thick filament formation and of ordered actin-myosin arrays was confirmed by electron microscopy. Myogenisation induced by transfection with MyoD yielded myofibrils only in myotubes formed from wild type and not from mutant cells, ruling out that a principal failure in myogenic commitment of the BHK-21-Bi cells might cause the observed effects. These experiments provide the first direct evidence for the crucial role of titin in both thick filament formation as a molecular ruler and in the coordination of myofibrillogenesis
Titin A-band-specific Monoclonal Antibody Tit1 5H1.1. Cellular Titin As a Centriolar Protein in Non-muscle Cells
First clinical and myopathological description of a myofibrillar myopathy with congenital onset and homozygous mutation in <em>FLNC</em>
A new early-onset neuromuscular disorder associated with kyphoscoliosis peptidase (KY) deficiency
We describe a new early-onset neuromuscular disorder due to a homozygous loss-of-function variant in the kyphoscoliosis peptidase gene (KY). A 7.5-year-old girl with walking difficulties from 2 years of age presented with generalized muscle weakness; mild contractures in the shoulders, hips and feet; cavus feet; and lordosis but no scoliosis. She had previously been operated with Achilles tendon elongation. Whole-body MRI showed atrophy and fatty infiltration in the calf muscles. Biopsy of the vastus lateralis muscle showed variability in fiber size, with some internalized nuclei and numerous very small fibers with variable expression of developmental myosin heavy chain isoforms. Some small fibers showed abnormal sarcomeres with thickened Z-discs and small nemaline rods. Whole-exome sequencing revealed a homozygous one-base deletion (c.1071delG, p.(Thr358Leufs*3)) in KY, predicted to result in a truncated protein. Analysis of an RNA panel showed that KY is predominantly expressed in skeletal muscle in humans. A recessive variant in the murine ortholog Ky was previously described in a spontaneously generated mouse mutant with kyphoscoliosis, which developed postnatally and was caused by dystrophy of postural muscles. The abnormal distribution of Xin and Ky-binding partner filamin C in the muscle fibers of our patient was highly similar to their altered localization in ky/ky mouse muscle fibers. We describe the first human case of disease associated with KY inactivation. As in the mouse model, the affected child showed a neuromuscular disorder – but in contrast, no kyphoscoliosis
