201 research outputs found

    Systematic study of spontaneous emission in a two-dimensional arbitrary inhomogeneous environment

    Get PDF
    The spontaneous emission (SE) of the excited atoms in a two-dimensional (2D) arbitrary inhomogeneous environment has been systematically studied. The local density of states, which determines the radiation dynamics of a point source (for 3D) or a line source (for 2D), in particular, the SE rate, is represented by the electric dyadic Green's function. The numerical solution of the electric Green's tensor has been accurately obtained with the finite-difference frequency-domain method with the proper approximations of the monopole and dipole sources. The SE of atoms in photonic crystal and plasmonic metal plates has been comprehensively and comparatively investigated. For both the photonic crystal and plasmonic plates systems, the SEs depend on their respective dispersion relations and could be modified by the finite-structure or finite-size effects. This work is important for SE engineering and the optimized design of optoelectronic devices. © 2011 American Physical Society.published_or_final_versio

    Spontaneous Emission in 2D Arbitrary Inhomogeneous Environment

    Get PDF
    Session 3P1b: Optics and Photonics 1Abstract| Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from lasers, light-emitting diodes, solar cells, and quan- tum information. According to the quantum electrodynamics theory, the spontaneous emission (SE) of an atom can be a weak-coupling radiation process due to the vacuum °uctuations of electromagnetic ¯eld. A suitable modi¯cation of inhomogeneous environment is required so that the vacuum °uctuations controlling the SE can be manipulated. Inhibiting unwanted SE and boosting desired ones will promote the novel optoelectronic designs tailored to industrial stan- dard. The local density of states (LDOS) counts the number of electromagnetic modes where photons can be emitted at the speci¯c location of the emitter, and can be interpreted as the density of vacuum °uctuations. The inhibition or enhancement of SE boils down to how the LDOS of photons is controlled. In this work, the SE of the excited atoms in 2D arbitrary inhomogeneous environment has been systematically studied. The LDOS determines the radiation dynamics of a point source (for 3D) or a line source (for 2D). In particular, it also determines the SE rate, and the LDOS is represented by the electric dyadic Green's function. The numerical solution of the electric Green's tensor has been accurately obtained by the ¯nite-di®erence frequency-domain method with the proper approximations of the monopole and dipole sources. The SE of the atoms in the photonic crystal and plasmonic metal plates has been comprehensively and comparatively investigated. For both systems, the SE strongly depends on their respective dispersion relations and could be modi¯ed or tuned by the ¯nite-structure or ¯nite-size e®ects. This work is important for the SE engineering and optimized design of optoelectronic devices.published_or_final_versio

    Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies

    Get PDF
    Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors

    Biview learning for human posture segmentation from 3D points cloud

    Get PDF
    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. © 2014 Qiao et al

    Stringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase

    Get PDF
    The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His–1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C–H bonds. Prolyl 4-hydroxylase (P4H) is an α-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His–1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase) and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change

    Identification of Mycobacterium tuberculosis-Specific Th1, Th17 and Th22 Cells Using the Expression of CD40L in Tuberculous Pleurisy

    Get PDF
    Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4+ T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4+CD40L+ but not CD4+CD40L− T cells express IFN-γ, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4+CD40L+ T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-γ, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA−CD45RO+CCR7−CD62L−ICOS−). To determine the specificity of CD4+CD40L+ T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4+CD40L+ and CD4+CD40L− T cells by flow cytometry. We further demonstrated that sorted CD4+CD40L+, but not CD4+CD40L− fractions, principally produced IFN-γ, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4+ T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed

    Guidelines On Diabetes, Pre-Diabetes, And Cardiovascular Diseases: Executive Summary.The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD).

    Get PDF
    Guidelines and Expert Consensus documents aim to present management and recommendations based on all of the relevant evidence on a particular subject in order to help physicians to select the best possible management strategies for the individual patient, suffering from a specific condition, taking into account not only the impact on outcome, but also the risk benefit ratio of a particular diagnostic or therapeutic procedure. The ESC recommendations for guidelines production can be found on the ESC website†. In brief, the ESC appoints experts in the field to carry out a comprehensive and critical evaluation of the use of diagnostic and therapeutic procedures and to assess the risk–benefit ratio of the therapies recommended for management and/or prevention of a given condition. The strength of evidence for or against particular procedures or treatments is weighed according to predefined scales for grading recommendations and levels of evidence, as outlined below. Once the document has been finalized and approved by all the experts involved in the Task Force, it is submitted to outside specialists for review. If necessary, the document is revised once more to be finally approved by the Committee for Practice Guidelines and selected members of the Board of the ESC. The ESC Committee for Practice Guidelines (CPG) supervises and coordinates the preparation of new Guidelines and Expert Consensus Documents produced by Task Forces, expert groups, or consensus panels. The chosen experts in these writing panels are asked to provide disclosure statements of all relationships they may have, which might be perceived as real or potential conflicts of interest. These disclosure forms are kept on file at the European Heart House, headquarters of the ESC. The Committee is also responsible for the endorsement of these Guidelines and Expert Consensus Documents or statements

    Nitration of the Pollen Allergen Bet v 1.0101 Enhances the Presentation of Bet v 1-Derived Peptides by HLA-DR on Human Dendritic Cells

    Get PDF
    Nitration of pollen derived allergens can occur by NO2 and ozone in polluted air and it has already been shown that nitrated major birch (Betula verrucosa) pollen allergen Bet v 1.0101 (Bet v 1) exhibits an increased potency to trigger an immune response. However, the mechanisms by which nitration might contribute to the induction of allergy are still unknown. In this study, we assessed the effect of chemically induced nitration of Bet v 1 on the generation of HLA-DR associated peptides. Human dendritic cells were loaded with unmodified Bet v 1 or nitrated Bet v 1, and the naturally processed HLA-DR associated peptides were subsequently identified by liquid chromatography-mass spectrometry. Nitration of Bet v 1 resulted in enhanced presentation of allergen-derived HLA-DR-associated peptides. Both the copy number of Bet v 1 derived peptides as well as the number of nested clusters was increased. Our study shows that nitration of Bet v 1 alters antigen processing and presentation via HLA-DR, by enhancing both the quality and the quantity of the Bet v 1-specific peptide repertoire. These findings indicate that air pollution can contribute to allergic diseases and might also shed light on the analogous events concerning the nitration of self-proteins
    • …
    corecore