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The spontaneous emission (SE) of the excited atoms in a two-dimensional (2D) arbitrary inhomogeneous
environment has been systematically studied. The local density of states, which determines the radiation dynamics
of a point source (for 3D) or a line source (for 2D), in particular, the SE rate, is represented by the electric dyadic
Green’s function. The numerical solution of the electric Green’s tensor has been accurately obtained with the
finite-difference frequency-domain method with the proper approximations of the monopole and dipole sources.
The SE of atoms in photonic crystal and plasmonic metal plates has been comprehensively and comparatively
investigated. For both the photonic crystal and plasmonic plates systems, the SEs depend on their respective
dispersion relations and could be modified by the finite-structure or finite-size effects. This work is important for
SE engineering and the optimized design of optoelectronic devices.
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I. INTRODUCTION

Control of spontaneously emitted light lies at the heart of
quantum optics. It is essential for diverse applications such as
lasers, light-emitting diodes (LEDs), solar cells, and quantum
information [1,2]. It is well known that the radiation dynamics
of an atom strongly depends on its environment, which was
first discovered by Purcell [3], and the spontaneous emission
(SE) can be enhanced if the emitting atom is coupled to a cavity
resonator. According to the quantum electrodynamics theory,
the SE of an atom can be a weak-coupling radiation process
due to the vacuum fluctuations of the electromagnetic field.
A suitable modification of an inhomogeneous environment is
required so that the vacuum fluctuations controlling the SE can
be manipulated. Inhibiting unwanted SE and boosting desired
ones will promote novel optoelectronic designs tailored to
industrial standards. The local density of states (LDOS) counts
the number of electromagnetic modes where photons can
be emitted at the specific location of the emitter and can
be interpreted as the density of vacuum fluctuations. The
inhibition or enhancement of SE reduces to how the LDOS
of photons is controlled.

Bragg scattering in the photonic crystal (PC) can yield
a photonic band gap that prohibits light propagation over
a range of frequencies and forms the atom-photon “bound
states” [4,5]. The LDOS of photons within the band gap
is inhibited, and therefore, the SE of an atom is forbidden.
Placing an active medium within the PC cavity can prohibit
undesired SE and allow emission only into the lasing mode,
thus dramatically improving the efficiency of the laser [2].
Another example is that the external quantum efficiency
of an LED can be significantly improved by introducing a
two-dimensional photonic crystal structure [6]. Moveover, a

*wsha@eee.hku.hk
†wcchew@hku.hk

sharp band edge of a PC produces new physical phenomena,
such as the coherent control of SE [7] and the non-Markovian
quantum fluctuations and superradiance [8]. However, the
challenge is on how to calculate the LDOS of photons in a
variety of PC structures. The most commonly adopted method
is the plane-wave expansion algorithm [9]. This algorithm
expands the electromagnetic field as the summation of plane
waves and recasts Maxwell’s equations into an eigenvalue
problem. Then the LDOS can be obtained by the Brillouin zone
integrals. Due to the slow convergence, the algorithm always
needs a large number of summation terms to guarantee the
desired accuracy. Moreover, the algorithm implicitly imposes
the periodic boundary conditions for the infinite PC structure.
Hence, the plane-wave expansion algorithm suffers from the
finite-structure problem or quasiperiodic problem.

The LDOS can also be modified when semiconductor
emitters are coupled to the surface plasmon polariton (SPP) of
metallic films [10,11]. An electron-hole pair emits a photon
coupled to a surface plasmon (SP) mode instead of to the
free space. The SPP-enhanced SE has been demonstrated in
quantum well lasers [12,13], resulting in small effective mode
volume. With the presence of strong optical confinement,
improved photoluminescence and a low threshold current have
been reported. However, most theoretical works employed the
approximated methods to model the problem, and convincing
results are hard to find in the literature. Furthermore, due to
the high contrast and dispersive properties of plasmonic metal
materials, the plane-wave expansion algorithm becomes less
attractive and effective.

The electric dyadic Green’s function (DGF) plays a central
role in the theoretical investigation of SE in an arbitrary
inhomogeneous and complex environment. The LDOS can
thus be expressed in an elegant way. The numerical solution
of the electric Green’s tensor needs an efficient and rigor-
ous full-wave solver for Maxwell’s equations. Although the
finite-difference time-domain (FDTD) method [14,15] is a
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candidate to achieve this goal, it has intrinsic disadvantages
for modeling the nanopatterned metal structures. First, the
complex dielectric constants of metal (Au, Ag, etc) have to
be described by a large number of summation terms in the
Lorentz-Drude model [16], and thus, the recursive convolution
implementation is very expensive. Second, the FDTD method
will suffer from an instability problem if flexible spatial
discretization forms are applied [17].

In this paper, the finite-difference frequency-domain
(FDFD) method [18,19] is adopted to obtain the electric
DGF in two-dimensional (2D) arbitrary inhomogeneous en-
vironments. In particular, we explore the proper discretization
strategy to express the 2D line sources involving the monopole
source and the dipole source. The spontaneous emission
rates (SERs) in the finite photonic crystal structure and
finite-size plasmonic metal plates have been comprehensively
and comparatively investigated. According to our survey, the
SEs of both systems strongly depend on their respective
dispersion relations. This conclusion provides a universal
concept that the SE can be tailored by dispersion management.
Additionally, the dispersion relations could be modified by the
finite-structure or finite-size effects.

II. THEORETICAL PRINCIPLES

A. Spontaneous emission rate

Due to the vacuum fluctuations of the electromagnetic field,
an atom or molecule embedded in an inhomogeneous medium
spontaneously emits photons. Let us consider a single atom
located at r0 and represented by a two-level system with
the transition dipole moment p and transition frequency ω0.
Considering weak excitation, according to Fermi’s golden
rule [20], the SER of the atom can be expressed as

γ (r0,ω0) = πω0

ε0h̄

∑
k

[p · (uku∗
k) · p]δ(ωk − ω0), (1)

where uk(r0,ω0) are the orthonormal eigenmodes of photons
in an inhomogeneous medium. Using the eigenfunction ex-
pansion technique, the electric DGF can be expressed as the
summation of orthonormal eigenmodes [21,22].

Im[Ḡ(r,r′,ω0)] = πc2

2ω0

∑
k

uk(r,ωk)u∗
k(r′,ωk)δ(ωk − ω0) (2)

This equation can also be derived with the fluctuation-
dissipation theorem [23], which writes the imaginary part of
the electric Green’s tensor in terms of the power spectrum of
the electric field in vacuum.

Substituting Eq. (2) into Eq. (1), we get

γ (r0,ω0) = 2ω2
0

ε0h̄c2
〈p · Im[Ḡ(r0,r0,ω0)] · p〉. (3)

If the transitions of the quantum system have no fixed dipole
axis and the medium is isotropic, the SER needs to be averaged
over various orientations leading to

γ (r0,ω0) = 2ω2
0|p|2

3ε0h̄c2
Im{Tr[Ḡ(r0,r0,ω0)]}. (4)

This suggests that the local coupling of the atomic dipole
moment to photons in this mode determines the SER of the
excited atom. In other words, the averaged SER is related to
the LDOS [20] defined by

ρ(r0,ω0) =
∑

k

|uk|2δ(ωk − ω0)

= 2ω0

πc2
Im{Tr[Ḡ(r0,r0,ω0)]}. (5)

To evaluate the SE enhancement, we can define the
normalized SER as

γ

γ0
= ρ(r0,ω0)

ρ0(r0,ω0)
= Im{Tr[Ḡ(r0,r0,ω0)]}

Im{Tr[Ḡ0(r0,r0,ω0)]} , (6)

where Ḡ0 indicates the DGF in free space. In fact, the normal-
ized SER is the Purcell factor in quantum electrodynamics.

B. Electric dyadic Green’s function in 2D free space

The electric DGF in free space can be represented as the
summation of three vectorial Green’s functions,

Ḡ(r,r′) = Gx(r,r′)âx + Gy(r,r′)ây + Gz(r,r′)âz, (7)

which satisfy the vector wave equations,

∇ × ∇ × Gm(r,r′) − k2
0Gm(r,r′) = âmδ(r − r′),

(8)
m = x,y,z,

where âmδ(r − r′) is the Dirac’s delta source at r = r′ with
the polarization along the x, y, and z directions, respectively.
The wave number in free space is denoted as k0. For the z-
invariant 2D problem, the source considered here is actually a
line source, and the 2D electric DGF can be simplified as

Ḡ(r,r′) =

⎛
⎜⎝

Gxx Gyx 0

Gxy Gyy 0

0 0 Gzz

⎞
⎟⎠ , (9)

and the TM (Ez field) and TE (Hz field) modes decouple with
each other.

For pointlike emitters, such as a quantum dot, the SE can be
analyzed by computing the 3D electric DGF [24]. However,
for optoelectronic devices, including LEDs and lasers, the gain
media are always embedded into the z-invariant emitting layers
[25]. Hence, the gain media can be viewed as linelike emitters.
Mathematically, the 2D DGF can be connected with the 3D
DGF by the following identity:

i

4
H

(1)
0 (k0|t − t′|) =

∫ ∞

−∞

exp(ik0|r − r′|)
4π |r − r′| dz′, (10)

where r = t + zâz and r′ = t′ + z′âz. From this identity, we
may understand that the SE of a line emitter is the ensemble
accumulation of that of point emitters. In recent works, the
outgoing power of 1D multilayered LED structure calculated
by planar source (not point source) shows good agreement with

043824-2



SYSTEMATIC STUDY OF SPONTANEOUS EMISSION IN A . . . PHYSICAL REVIEW A 83, 043824 (2011)

the experimental result [26]. In addition, the Casimir force
between z-invariant nanostructures by vacuum fluctuations
of the electromagnetic field is also characterized by the 2D
DGFs [27,28]. In this paper, we will study the SE in 2D finite
structures, and hence, line source is employed. For this point,
more theoretical and experimental studies should be done in
the future.

The component Gzz in Eq. (9) can be found by solving the
TM scalar wave equation of the Ez field in free space:

∇2Ez + k2
0Ez = −iωµ0Jz = −δ, (11)

where δ = δ(x − x ′)δ(y − y ′) is the z-polarized monopole
source and Ez = Ez(x,y).

The components Gxx and Gyy can be found by solving the
TE scalar wave equation of Hz field in free space:

∇2Hz + k2
0Hz = ∂Jx

∂y
= 1

iωµ0

∂δ

∂y
, (12)

∇2Hz + k2
0Hz = −∂Jy

∂x
= −1

iωµ0

∂δ

∂x
, (13)

where ∂δ/∂y and ∂δ/∂x are the x-polarized and y-polarized
dipole sources. After getting the Hz field component, Gxx is
obtained from the Ex field generated by the dipole source, i.e.,

Gxx = Ex = 1

k2
0

(
iωµ0

∂Hz

∂y
− δ

)
. (14)

Similarly, Gyy can be obtained from

Gyy = Ey = 1

k2
0

(
− iωµ0

∂Hz

∂x
− δ

)
. (15)

The analytical solution of the electric DGF in 2D free space
is important for validating our theoretical model. We can see
that the imaginary part of the electric DGF at the origin is
regular, which agrees with the fact that the SER is finite.

Im[Gzz(t0,t0)] = lim
t→t′

Im

[
i

4
H

(1)
0 (k0|t − t′|)

]

= 1

4
lim
t→t′

J0(k0|t − t′|)
= 0.25, (16)

Im[Gxx(t0,t0)] = lim
t→t′

−1

4k2
0

∂2

∂y2
J0(k0|t − t′|)

= lim
t→t′

[
1

4k0|t − t′|J1(k0|t − t′|)

− (y − y ′)2

4|t − t′|2 J2(k0|t − t′|)
]

= 0.125, (17)

Im[Gyy(t0,t0)] = lim
t→t′

−1

4k2
0

∂2

∂x2
J0(k0|t − t′|)

= lim
t→t′

[
1

4k0|t − t′|J1(k0|t − t′|)

− (x − x ′)2

4|t − t′|2 J2(k0|t − t′|)
]

= 0.125. (18)

C. Finite-difference frequency-domain method

In order to characterize the SE in an arbitrary inhomoge-
neous environment, a rigorous, accurate, and efficient solver
for Maxwell’s equations is essential. Compared with other
algorithms, the FDFD method is very easy to implement and
has a good ability to handle frequency-dependent material
properties. Moreover, it can treat various inhomogeneous
boundary conditions conveniently. Finally, the matrix pro-
duced by the FDFD method is sparse and can be solved with
the multigrid fast algorithm [29] with a memory cost of O(N )
and a complexity of O(N ) for some problems.

With the Yee lattice [30], the 2D FDFD method is utilized
to obtain the electric DGF. We employ the perfectly matched
layer (PML) [31,32] as the absorbing boundary condition to
truncate the computational region. The discretization forms of
TM/TE wave equations with averaged dielectric constants are
also derived.

The numerical treatment of the monopole and dipole
sources plays a key role in calculating the electric DGF. For
the 2D monopole source, we have

δ(x − m′�x,y − n′�y)|x=m′�x,y=n′�y
≈ 1

�x�y

, (19)

where �x and �y are the spatial steps along the x and
y directions, respectively, and (m′,n′) is the grid index of
the source point of the Ez component. If we regard the
monopole source as a rectangular pulse function and apply
the finite-difference technique again, the dipole source can be
approximated as

∂δ(x − m′�x,y − n′�y)

∂y

≈ −δ(x − m′�x,y − (n′ + 0.5)�y)

�y

+ δ(x − m′�x,y − (n′ − 0.5)�y)

�y

. (20)

This can be simplified to −1/(�x�
2
y) and 1/(�x�

2
y) at

the source points (m′,n′ + 0.5) and (m′,n′ − 0.5) of the Hz

components, respectively.
The wave equations for the TM and TE modes in an

inhomogeneous environment are respectively formulated as

1

εr

∂

∂x

(
1

µr

∂Ez

∂x

)
+ 1

εr

∂

∂y

(
1

µr

∂Ez

∂y

)
+ k2

0Ez = 0, (21)

1

µr

∂

∂x

(
1

εr

∂Hz

∂x

)
+ 1

µr

∂

∂y

(
1

εr

∂Hz

∂y

)
+ k2

0Hz = 0, (22)

where εr and µr are the relative permittivities and permeabil-
ities. In this paper, we assume that µr = 1, εr = n2

c , and nc is
the complex dielectric constant of the optical material.

As shown in Fig. 1, a five-point stencil is used for the
FDFD method. The discretized forms for the TM and TE wave
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FIG. 1. (Color online) The five-point stencil for the FDFD
method. �x and �y are, respectively, the spatial steps along the
x and y directions. 	 = Ez for a TM wave, and 	 = Hz for a TE
wave. ε = n2

c is the relative permittivity in the discretized region, and
nc is the complex dielectric constant of the optical material.

equations are respectively of the form

2

(
1

�2
x

+ 1

�2
y

)
	0

ε̄
− k2

0	0 − 	1 + 	3

ε̄�2
x

− 	2 + 	4

ε̄�2
y

= 0,

	 = Ez, (23)

2

(
1

�2
x

+ 1

�2
y

)
	0

ε̄
− k2

0	0 − ε−1
1 + ε−1

4

2�2
x

	1 − ε−1
2 + ε−1

3

2�2
x

	3

− ε−1
1 + ε−1

2

2�2
y

	2 − ε−1
3 + ε−1

4

2�2
y

	4 = 0, (24)

	 = Hz,

ε̄ =
{

ε1+ε2+ε3+ε4
4 , 	 = Ez,

4(ε−1
1 + ε−1

2 + ε−1
3 + ε−1

4 )−1, 	 = Hz.
(25)

The PML can absorb the outgoing waves without spurious
reflections and is very suitable for the unbounded optical
problem. The wave equation with the complex-coordinate-

stretched PML [32] is given by

1

sr (x)

∂

∂x

(
1

sr (x)

∂	

∂x

)
+ 1

sr (y)

∂

∂y

(
1

sr (y)

∂	

∂y

)
+ k2

0	 = 0,

(26)

where sr = 1 + iσ/ωε and the conductivities σ (x) and σ (y)
are nonzeros only within PML layers normal to the x axis and
y axis, respectively. The optimized conductivities [33] in the
PML layers are chosen as

σm = 0.02

�

(
2m − 1

16

)3.7

, m = 1, . . . ,8,

(27)

σm+0.5 = 0.02

�

(
2m

16

)3.7

, m = 0, . . . ,8,

where � = �x or � = �y for the PML layers normal to the
x axis or y axis and m is the grid index of the eight-layer
PML.

D. Benchmark

To validate our theoretical model, we calculate the electric
DGF in 2D free space by using the FDFD method. Making
use of the example, we could verify that the FDFD method
can accurately calculate the DGF, especially when the source
point and the observation point overlap with each other and
the singularity arises (r = r′). For a given frequency, the
DGFs along a fixed direction are calculated with the spatial
step of 1/20 wavelength. The FDFD results are compared
to the analytical solutions derived in Eqs. (16)–(18). As
shown in Figs. 2(a) and 2(b), the numerical results agree
with the analytical solutions very well. Figure 2(c) shows
the relative errors of the DGFs as a function of points per
wavelength. The second-order convergence of the FDFD
method still can be guaranteed at the singularity points of the
DGFs.
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FIG. 2. (Color online) The imaginary parts of the electric DGFs in 2D free space along the y = 0 direction. The line source is located at
(x = 0,y = 0). (a) The imaginary part of the Ez field generated by a z-polarized monopole source. The analytical solution is 0.25J0 (k|x|)
and Im[Gzz(t0,t0)] = 0.25. (b) The imaginary part of the Ex field generated by an x-polarized dipole source. The analytical solution is
J1(k|x|)/4k0|x| and Im[Gxx(t0,t0)] = 0.125. (c) The relative errors of the DGFs at the singularity points as a function of points per wavelength
(PPW) plotted on the log-log scale.
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FIG. 3. (Color online) (a) The normalized SER of the atoms,
which are located at the air and surrounded by the 4 × 4 or 20 × 20
dielectric rods. (b) The dispersion curve of the infinite PC structure
with dielectric rods for the TM mode. The SER is calculated by
Im[Gzz(t0,t0)].

III. SIMULATION RESULTS

The SE in different inhomogeneous environments is studied
by calculating the electric DGF.

(1) The SE in the square-lattice PCs with the 4 × 4 and
20 × 20 rods are investigated. In contrast to the plane-wave ex-
pansion algorithm, which uses the summation of orthonormal
eigenmodes via Eq. (1), the FDFD method characterizes the
SE by computing the electric DGF for the finite lattice directly.
The dispersion relations of the infinite 2D PC structures are
obtained by solving the eigenfrequencies versus the wave
vectors on the boundaries of the irreducible Brillouin zone,
as shown in Figs. 3(b) and 4(b). For the dispersion curves,
X corresponds to (kx = 0, ky = 0), M corresponds to (kx =
π/P, ky = 0), and N corresponds to (kx = π/P, ky = π/P ).
We also calculate the dispersion relations with the FDFD
method, imposing the periodic boundary conditions on the unit
cell. The dispersion curves calculated with the FDFD method
agree with those obtained with the plane-wave expansion
algorithm, which demonstrates the powerful capability of
the FDFD method in handling inhomogeneous boundary
conditions.

The periodicity of the PC structures is denoted by P . For
the TM case, the radius of the dielectric rod is 0.2P , and the
dielectric contrast is 8.9. For the TE case, the radius of the
air rod is 0.46P , and the dielectric contrast is 12. In Fig. 3,
the dispersion curve of the periodic dielectric rods for the TM
mode is compared to the normalized Im[Gzz(t0,t0)], which
is also the normalized SER of the longitudinal (z-)polarized
atoms according to Eqs. (3) and (6). Likewise, the dispersion
curve of the periodic air rods for the TE mode is compared to
the normalized SER of the transverse (xy-)polarized atoms, as
shown in Fig. 4.

For the frequencies in the center of the photonic band gap,
the SER in the 20 × 20 PC array can be reduced to less than
10−7 of that in free space for both the TM and TE cases. The
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FIG. 4. (Color online) (a) The normalized SER of the atoms,
which are located at the dielectric medium and surrounded by the
4 × 4 or 20 × 20 air rods. (b) The dispersion curve of the infinite PC
structure with air rods for the TE mode. The SER is calculated by the
summation of Im[Gxx(t0,t0)] and Im[Gyy(t0,t0)].

suppression of SE is caused by the Bragg scattering of the
periodic PC array, where the LDOS of photons is extremely
low and light cannot propagate. Ideally, no SE is allowed
within the band gap of the infinite PC structure. Contrarily,
the SE is significantly enhanced at the photonic band edge of
the 20 × 20 PC array, where the group velocity of light is very
slow and photons can couple to the radiation or leaky modes
after a short mean free path. Thus, a high LDOS of photons
can be achieved. Unlike the 20 × 20 PC array, the 4 × 4 PC
array with few unit cells shows insignificant suppression or
enhancement of SE because the coherent Bragg scattering
becomes weaker and weaker. Hence, the plane-wave expansion
algorithm [9], which implicitly imposes the periodic boundary
condition or assumes infinite PC structure, cannot reproduce

FIG. 5. (Color online) The normalized SER as a function of
the distance between the atoms and the gold plates. The transition
frequency of the atoms is set to be 510 nm.
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FIG. 6. (Color online) The normalized SER as a function of the
transition frequency of the atoms. The distance d is set to be 30 nm.

the physics of SE in a finite PC structure with few unit
cells.

(2) The SE of the atoms in the plasmonic metal plates
is studied. The z-invariant gain media can be modeled as
an ensemble of atoms or a line source. Figure 5 shows the
schematic diagram; that is, the line source is located near a
single Au plate or within a metal cavity by two Au plates. The
widths of the bottom and top plates are W1 = W2 = 100 nm,
the thickness of each plate is h = 40 nm, and the distance
between two plates is d. The complex dielectric constant of
Au is taken from [34]. When the location of the atoms moves
close to the Au plate, the enhanced SE due to the surface
plasmon resonance can be seen clearly in Fig. 5. Remarkably,
the SE can be significantly boosted with the help of the metal
cavity structure. The Purcell factor or the normalized SER
can be almost 250 when the two metal plates are separated
by 10 nm, while it is less than 50 for the single metal plate.
The extreme enhancement will be of great help for designing
optoelectronic devices.

For the 2D semi-infinite metal-dielectric structure, only
TE wave (Hz, Ex , Ey components) can excite the SPPs.
The momentum (dispersion relation) of the SPP along the
x-direction can be expressed as [35]

βx = k0

√
εmεd

εm + εd

, (28)

where εm and εd are the relative permittivities of the metal and
dielectric half spaces, respectively. The surface wave satisfies
the condition Re[εm] < 0, and the surface plasmon resonance
occurs when εd + εm = 0. For the real-world situation, the
local maximum of βx is finite due to the interband damping;
nonetheless, large βx still contribute to both the high decay
rate along the y direction and strong optical confinement. The
normalized SPP momentum Re[βx]/k0 along the metal-air
interface is shown in the inset of Fig. 6. We can observe that
the curves of the normalized SER follow that of the normalized
SPP momentum with some peak shifting; the surface plasmon
resonance appears around 510 nm. The SPP momentum is
derived under the assumption of an infinite-length metal plate,
and therefore, the small peak shifting results from the finite-
length effect.

The monopole or dipole source produces evanescent waves
and can excite the SPPs with the momentum-matching
condition. Figures 7(a) and 7(b) show the imaginary parts
of the Ey fields (Im[Gyy]) generated by the y-polarized dipole
sources. The field intensity at 510 nm (close to resonance) is
more concentrated inside the air gap due to the surface plasmon
resonance, which can be observed in Fig. 6. Such resonance
leads to strong field confinement as well as a large imaginary
part of the field at the emitting point. For the x-directed dipole
source, as shown in Fig. 7(c), the SPPs are also excited with
the asymmetric mode compared with the symmetric mode
excited by the y-polarized dipole source, as shown in Fig. 7(a).
Figure 7(d) shows that no SPP exists if the source is polarized
normal to the incident plane (TM wave case).

Finally, we comparatively study the above two examples.
For the PC case, the suppression of SE coincides with
the photonic band gap of the dispersion diagram. For the
metal plate case, the enhancement of SE is consistent with
the peak of the dispersion diagram of SPP. For both sys-
tems, the SE strongly depends on their respective dispersion
relations. The conclusion is a universal concept and can be
generalized because obtaining the electric DGF and the dis-
persion relation in inhomogeneous environments essentially
corresponds to the same eigenvalue problem of Maxwell’s
equations. For finite PC structures with few unit cells, the SE
suppression within the band gap is insignificant. For finite-size
metal plates, we demonstrate the peak shifting of SE with
respect to the dispersion diagram of an infinite metal plate.
For both systems, the finite-structure or finite-size effects could
modify or tune the dispersion relation of an electromagnetic
system.
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FIG. 7. (Color online) (a) Im[Ey] for ây dipole source at 510 nm; (b) Im[Ey] for ây dipole source at 800 nm; (c) Im[Ex] for âx dipole
source at 510 nm; (d) Im[Ez] for âz monopole source at 510 nm.
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IV. CONCLUSION

Using the rigorous and efficient FDFD method, the SE
in a 2D arbitrary inhomogeneous environment has been
systematically studied. The electric DGF was obtained with
the proper approximations of the monopole and dipole sources
and with flexible treatments of inhomogeneous boundary
conditions.

Under the investigation of both the PC and the plasmonic
metal plate systems, we develop a universal concept that the
SE strongly depends on the dispersion relation. In other words,
the SE in an inhomogeneous environment can be engineered

with dispersion management. Furthermore, the finite-structure
or finite-size effects can modify the dispersion relation of
electromagnetic system and should be exploited in the design
of optoelectronic devices.
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