102 research outputs found

    Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades

    No full text
    Oil pollution entering the marine environment has been an issue of concern for many decades. It can come from riverine or land-based sources, accidental and intentional discharges from ships, or as a by-product of offshore oil extraction. Growing awareness of the impact of oil pollution on the marine environment has led, since the late 1960s, to the introduction of measures to reduce or eliminate pollution from shipping and the offshore oil industry. A framework for environmental protection of the North Sea has developed over many decades through international agreements, regional cooperation, and national measures, while education has also played an important role with modern-day sailors being given due training to understand that dumping waste at sea is illegal in many areas, and is harmful to the marine environment. This paper presents data on trends in pollution from ships and oil installations. While significant reductions in oil pollution have been identified over more than two decades, there remain some areas where action is needed to reduce inputs still further, especially from oil and gas platforms

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160 million (range: US116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US14million(rangeUS 14 million (range US12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013 ) is US6.5millionintotal(range:US6.5 million in total (range: US6.2-6.7 million). We estimated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical

    Phytoplankton evolution during the creation of a biofloc system for shrimp culture

    Full text link
    [EN] Microalgae play a key role in the dynamics of biofloc technology aquaculture systems. Some phytoplankton groups, such as diatoms, are desired for their high nutritional value and contribution to water quality. Other groups, such as cyanobacteria, are undesired because of their low nutritional value and capacity of producing toxins. So, monitoring the phytoplankton community structure and succession is key for managing biofloc systems. However, research on phytoplankton in these systems is scarce and mostly done by microscopy. The primary objective of this research was to estimate phytoplankton community structure in shrimp biofloc system water samples, using high-performance liquid chromatography methods and CHEMTAX software. The major groups present in our system were diatoms, euglenophytes, cyanobacteria and chlorophytes, while dinoflagellates were only remarkable at the initial period. We observed a clear dominance of diatoms all along the 5 months that comprised a complete biofloc system culture. The characteristic succession of autotrophic processes by heterotrophs of the biofloc systems, was observed by the reduction of net primary production. Light intensity played a key role in determining the phytoplankton composition and abundance. Algal pigment analyses using high-performance liquid chromatography and subsequent CHEMTAX analysis in water samples was useful for estimating the phytoplankton community structure in the biofloc systems. However, we found some limitations when the biofloc system was in heterotrophic mode. Under these conditions, some dinoflagellates and cyanobacteria behaved as heterotrophs and lost or decreased their biomarkers pigments. So, further research is needed to increase knowledge on the accuracy of high-performance liquid chromatography /CHEMTAX under these conditions.Financial support for this research was provided by Conselleria d’EducaciĂł, InvestigaciĂł, Cultura i Esport of the Generalitat Valenciana, through the program VALi+D, fle number ACIF/2014/244. We would like to express our deepest thanks to Professor Luis Henrique da Silva Poersch of FURG (Universidade Federal do Rio Grande) and Ivan Vidal (Langostinos el Real) for his support. Finally, the authors wish to thank Le Gouessant and MichaĂ«l Metz for providing the commercial feed.Llario-Sempere, F.; Rodilla, M.; EscrivĂĄ-Perales, J.; Falco, S.; SebastiĂĄ-Frasquet, M. (2018). Phytoplankton evolution during the creation of a biofloc system for shrimp culture. International Journal of Environmental Science and Technology. 1-12. https://doi.org/10.1007/s13762-018-1655-5S112Ahmed A, Kurian S, Gauns M, Chndrasekhararao AV, Mulla A, Naik B, Naik H, Naqvi SWA (2016) Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res 119:30–39. https://doi.org/10.1016/j.csr.2016.03.005Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235. https://doi.org/10.1016/S0044-8486(99)00085-XAvnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025Avnimelech Y (2009) Biofloc technology. A practical guide book. The World Aquaculture Society, Baton RougeAzim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, de Abreu L, Wasielesky WJ (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16:163–172. https://doi.org/10.1111/j.1365-2095.2009.00648.xBaloi M, Arantes R, Schveitzer R, Magnotti C, Vinatea L (2013) Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac Eng 52:39–44. https://doi.org/10.1016/j.aquaeng.2012.07.003Baumgarten MGZ, Wallner-Kersanach M, Niencheski LFH (2010) Manual de anĂĄlises em oceanografia quĂ­mica. Furg, Rio GrandeBecerra-DĂłrame MJ, MartĂ­nez-CĂłrdova LR, MartĂ­nez-Porchas M, Lopez-ElĂ­as JA (2011) Evaluation of autotrophic and heterotrophic microcosm- based systems on the production response of Litopenaeus vannamei intensively nursed without Artemia and with zero water exchange. Isr J Aquac Bamidgeh 63:7Brito LO, dos Santos IGS, de Abreu JL, de AraĂșjo MT, Severi W, GĂ lvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47:3990–3997. https://doi.org/10.1111/are.12849Campa-CĂłrdova AI, NĂșñez-VĂĄzquez EJ, Luna-GonzĂĄlez A, Romero-Geraldo MJ, Ascencio F (2009) Superoxide dismutase activity in juvenile Litopenaeus vannamei and Nodipecten subnodosus exposed to the toxic dinoflagellate Prorocentrum lima. Comp Biochem Physiol C Toxicol Pharmacol 149:317–322. https://doi.org/10.1016/j.cbpc.2008.08.006CasĂ© M, Leça EE, LeitĂŁo SN, SantAnna EE, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352. https://doi.org/10.1016/j.marpolbul.2008.02.008Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80. https://doi.org/10.1016/S0044-8486(00)00540-8Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54. https://doi.org/10.1016/j.aquaeng.2014.02.002Duarte CM, MarrasĂ© C, VaquĂ© D, Estrada M (1990) Counting error and the quantitative analysis of phytoplankton communities. J Plankton Res 12:295–304. https://doi.org/10.1093/plankt/12.2.295Ebeling J, Timmons M, Bisogni J (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019El-Dahhar AA, Salama M, Elebiary EH (2015) Effect of energy to protein ratio in biofloc technology on water quality, survival and growth of mullet (Mugil cephalus). J Arab Aquac Soc 10:15–32. https://doi.org/10.12816/0026633Emerenciano MGC, MartĂ­nez-CĂłrdova LR, MartĂ­nez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management. In: Tutu H (ed) water quality. InTech, Rijeka. https://doi.org/10.5772/66416Figueroa F, Niell F, Figueiras F, Villarino M (1998) Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain). Mar Biol 130:491–499Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquac. https://doi.org/10.21061/ijra.v12i1.1354Garrido JL, Airs RL, RodrĂ­guez F, Van Heukelem L, Zapata M (2011) New HPLC separation techniques. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. University Press, Cambridge, pp 165–194Ge H, Li J, Chang Z, Chen P, Shen M, Zhao F (2016) Effect of microalgae with semicontinuous harvesting on water quality and zootechnical performance of white shrimp reared in the zero water exchange system. Aquac Eng 72–73:70–76. https://doi.org/10.1016/j.aquaeng.2016.04.006Godoy LC, Odebrecht C, Ballester E, Martins TG, Wasielesky WJ (2012) Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac Int 20:559–569. https://doi.org/10.1007/s10499-011-9485-1Grasshoff K (1976) Methods of seawater analysis. Verlag Chemie: Weinstei, New YorkGreen BW, Schrader KK, Perschbacher PW (2014) Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquac Res 45:1442–1458. https://doi.org/10.1111/are.12096Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N (2017) Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol 29:1781–1790. https://doi.org/10.1007/s10811-017-1133-3Higgins HW, Wright SW, SchlĂŒter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University Press, Cambridge, pp 257–313Hooker S, Firestone E, Claustre H, Ras J (2001) The first SeaWiFS HPLC analysis round-robin experiment (SeaHARRE-1). https://ntrs.nasa.gov/search.jsp?R=20010072242 . Accessed 19 July 2017Horabun T (1997) Relationships between water quality and phytoplankton in the Bangpakong river. http://agris.fao.org/agris-search/search.do?recordID=TH2000001898 . Accessed 19 July 2017Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202. https://doi.org/10.1093/plankt/25.2.193Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J Phycol 11:374–384. https://doi.org/10.1111/j.1529-8817.1975.tb02799.xJeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91. https://doi.org/10.1007/s12601-010-0007-2Jory DE, Cabrera TR, Dugger DM, Fegan D, Lee PG, Lawrence L, Jackson C, Mcintosh R, Castañeda J, International B, Park H, Hwy N, Pierce F (2001) A global review of shrimp feed management: status and perspectives. Aquaculture 318:104–152Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, Horgen FD (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133. https://doi.org/10.1111/j.1365-2109.2007.01856.xKingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (euglenophyta). J Phycol 35:245–253. https://doi.org/10.1046/j.1529-8817.1999.3520245.xLatasa M, Scharek R, Vidal M, Vila-Reixach G (2010) Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar Ecol Prog Ser 40:27–42. https://doi.org/10.3354/meps08559Li Y, Swift E, Buskey EJ (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (pyrrophyta). J Phycol 32:974–982. https://doi.org/10.1111/j.0022-3646.1996.00974.xLi A, Stoecker D, Adolf J (1999) Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat Microb Ecol 19:163–176. https://doi.org/10.3354/ame019163Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. J Exp Mar Biol Ecol 259:109–119. https://doi.org/10.1016/S0022-0981(01)00227-1Lin YC, Chen JC (2003) Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:93–201. https://doi.org/10.1016/S0044-8486(03)00220-5Lohscheider JN, Strittmatter M, KĂŒpper H, Adamska I, Heaney S, Cunningham C (2011) Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. Strains depends on their ability for photoprotection. PLoS ONE. https://doi.org/10.1371/journal.pone.0020134Lukwambe B, Qiuqian L, Wu J, Zhang D, Wang K, Zheng Z (2015) The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) aquaculture ponds. Aquac Int 23:1443–1455. https://doi.org/10.1007/s10499-015-9895-6Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283MaicĂĄ PF, de Borba MR, Wasielesky WJ (2012) Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquac Res 43:361–370. https://doi.org/10.1111/j.1365-2109.2011.02838.xManan H, Moh JHZ, Kasan NA, Suratman S, Ikhwanuddin M (2016) Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl Water Sci. https://doi.org/10.1007/s13201-016-0421-4Marinho YF, Brito LO, Campos S, Severi W, Andrade HA, Galvez AO (2016) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164. https://doi.org/10.1111/are.13235Martins TG, Odebrecht C, Jensen LV, D’Oca MG, Wasielesky WJ (2016) The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquac Res 47:1315–1326. https://doi.org/10.1111/are.12592Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61. https://doi.org/10.1111/raq.12024Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986. https://doi.org/10.1289/ehp.6903Paerl H, Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquac 26:109–131. https://doi.org/10.1111/j.1749-7345.1995.tb00235.xPĂ©rez-Linares J, Ochoa JL, GagoMartĂ­nez A (2008) Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931. J Food Sci 73:T69–T73. https://doi.org/10.1111/j.1750-3841.2008.00710.xPĂ©rez-Morales A, Band-Schmidt CJ, MartĂ­nez-DĂ­az SF (2017) Mortality on zoea stage of the Pacific white shrimp Litopenaeus vannamei caused by Cochlodinium polykrikoides (Dinophyceae) and Chattonella spp. (Raphidophyceae). Mar Biol 164:57. https://doi.org/10.1007/s00227-017-3083-3Ray AJ, Dillon KS, Lotz JM (2011) Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquac Eng 45:127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001SchlĂŒter L, Lauridsen T, Krogh G (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios–a comparison between pigment analysis by HPLC and microscopy. Freshwater 51:1474–1485. https://doi.org/10.1111/j.1365-2427.2006.01582.x/fullSchlĂŒter L, Behl S, Striebel M, Stibor H (2016) Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshw Biol 61:1627–1639. https://doi.org/10.1111/fwb.12803Schrader KK, Green BW, Perschbacher PW (2011) Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac Eng 45:118–126. https://doi.org/10.1016/j.aquaeng.2011.08.004SebastiĂĄ M, Rodilla M (2013) Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ Manage 51:225–240. https://doi.org/10.1007/s00267-012-9986-3SebastiĂĄ M, Rodilla M, Sanchis J, Altur V (2012) Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric Ecosyst Environ 152:10–20. https://doi.org/10.1016/j.agee.2012.02.006Seoane S, Garmendia M, Revilla M, Borja Á, Franco J, Orive E, Valencia V (2011) Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the Water Framework. Mar Pollut 62:1484–1497. https://doi.org/10.1016/j.marpolbul.2011.04.010Sinden A, Sinang SC (2016) Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. Int J Environ Sci Technol 13:2855–2862. https://doi.org/10.1007/s13762-016-1112-2Sospedra J, Niencheski LFH, Falco S, Andrade CF, Attisano KK, Rodilla M (2017) Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea). Oceanologia. https://doi.org/10.1016/j.oceano.2017.07.004Strickland J (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Canada 122:172Ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Écoscience 1:127–140. https://doi.org/10.1080/11956860.1994.11682237Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). http://library.wur.nl/WebQuery/wurpubs/wever/341885 . Accessed 19 July 2017Utermohl M (1985) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Limnologie 9:1–38Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Institution Harbor Branch Oceanographic (ed) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Florida, pp 128–138Vinatea L, GĂĄlvez AO, Browdy CL, Stokes A, Venero J, Haveman J, Lewis BL, Lawson A, Shuler A, Leffler JW (2010) Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac Eng 42:17–24. https://doi.org/10.1016/j.aquaeng.2009.09.001Wright S, Jeffrey S, Mantoura R (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133. https://doi.org/10.1007/s10811-008-9341-5Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278. https://doi.org/10.1046/j.1355-557x.2002.00671.

    The Mycobacterium tuberculosis Drugome and Its Polypharmacological Implications

    Get PDF
    We report a computational approach that integrates structural bioinformatics, molecular modelling and systems biology to construct a drug-target network on a structural proteome-wide scale. The approach has been applied to the genome of Mycobacterium tuberculosis (M.tb), the causative agent of one of today's most widely spread infectious diseases. The resulting drug-target interaction network for all structurally characterized approved drugs bound to putative M.tb receptors, we refer to as the ‘TB-drugome’. The TB-drugome reveals that approximately one-third of the drugs examined have the potential to be repositioned to treat tuberculosis and that many currently unexploited M.tb receptors may be chemically druggable and could serve as novel anti-tubercular targets. Furthermore, a detailed analysis of the TB-drugome has shed new light on the controversial issues surrounding drug-target networks [1]–[3]. Indeed, our results support the idea that drug-target networks are inherently modular, and further that any observed randomness is mainly caused by biased target coverage. The TB-drugome (http://funsite.sdsc.edu/drugome/TB) has the potential to be a valuable resource in the development of safe and efficient anti-tubercular drugs. More generally the methodology may be applied to other pathogens of interest with results improving as more of their structural proteomes are determined through the continued efforts of structural biology/genomics

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (Ï„Îœ and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    • 

    corecore