1,749 research outputs found

    Circadian Organization in Hemimetabolous Insects

    Get PDF
    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm

    Concentration effects on the dynamics of liquid crystalline self-assembly: Time-resolved X-ray scattering studies.

    Get PDF
    A manifold of ordering transitions relevant to chemical and biological systems occur at interfaces from liquids to self-assembled soft solids like membranes or liquid crystals. In the present case, we were interested in understanding the phase transition from the microemulsion phase to the liquid crystal phase in terms of their driving forces, i.e., activation energy and entropy. The purpose of this work was to clarify the influence of concentration effects of the amphiphilic molecules on the nature of these self-assembly processes. By photosensitization of the model system (polyalkylglycolether (C(10)E(4)), water, decane, and cyclohexane) with laser dyes, we could effectively induce and control the phase transition through the absorption of optical photons. The photo transformation conditions were chosen in such a way that the system was in thermal equilibrium. By application of time-resolved photo small-angle X-ray scattering we could monitor the conversion process and demonstrate that the surfactant concentration has a direct impact on the activation energy, which is observable through the length of the induction time

    Open Repair Versus Thoracic Endovascular Aortic Repair in Multiple-Injured Patients: Observations From a Level-1 Trauma Center

    Get PDF
    Background: Blunt trauma of the thoracic aorta is a rare but potentially life-threatening entity. Intimal tears are a domain of non-operative management, whereas all other types of lesions should be repaired urgently. There is now a clear trend favoring minimally invasive stent grafting over open surgical repair. Objectives: The aim of the present study was to retrospectively evaluate the mortality and morbidity with either treatment option. Therefore, a retrospective observational study was performed to compare two different treatment methods at two different time periods at one trauma center. Patients and Methods: Between 1977 and 2012, all severely injured patients referred to our level 1 trauma center were screened for blunt aortic injuries. We compared baseline characteristics, 30-day and overall mortality, morbidity, duration of intensive care treatment, procedure time, and transfusion of packed red blood between patients who underwent open surgical or stent repair. Results: During the observation period, 45 blunt aortic injuries were recorded. The average Injury Severity Score (ISS) was 41.8 (range 29 - 68). Twenty-five patients underwent Open Repair (OR), and another 20 patients were scheduled to emergency stent grafting. The 30-day mortality in the surgical and stent groups were 5/25 (20%) and 2/20 (10%), respectively. The average time for open surgery was 151 minutes; the mean time for stent grafting was 67 minutes (P = 0.001). Postoperative stay on the intensive care unit was between one and 59 days (median 10) in group one and between four and 50 days in group two (median 26)(P = 0.03). Patients undergoing OR required transfusion of 6.0 units of packed red cells in median; patients undergoing stent grafting required a median of 2.0 units of packed red cells (P < 0.001). In the stent grafting group, 30-day mortality was 10% (2/20). Conclusions: Due to more sophisticated diagnostic tools and surgical approaches, mortality and morbidity of blunt aortic injuries were significantly reduced over the years compared to thoracic endovascular aortic repair and OR over two different time periods

    The importance of structural softening for the evolution and architecture of passive margins

    Get PDF
    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100-300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins

    Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils

    Get PDF
    The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88–96%, and GX was 63–98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49–92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.Peer reviewe

    Brownian forces in sheared granular matter

    Get PDF
    We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting in the system performs a Brownian motion. The same assumption has been utilised, with success, to describe other phenomena, such as the Barkhausen effect in ferromagnets, and so the scheme suggests itself as a more general description of a wider class of driven instabilities.Comment: 4 pages, 5 figures and 1 tabl

    Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils

    Get PDF
    The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88–96%, and GX was 63–98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49–92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.Peer reviewe

    The filamentation instability driven by warm electron beams: Statistics and electric field generation

    Full text link
    The filamentation instability of counterpropagating symmetric beams of electrons is examined with 1D and 2D particle-in-cell (PIC) simulations, which are oriented orthogonally to the beam velocity vector. The beams are uniform, warm and their relative speed is mildly relativistic. The dynamics of the filaments is examined in 2D and it is confirmed that their characteristic size increases linearly in time. Currents orthogonal to the beam velocity vector are driven through the magnetic and electric fields in the simulation plane. The fields are tied to the filament boundaries and the scale size of the flow-aligned and the perpendicular currents are thus equal. It is confirmed that the electrostatic and the magnetic forces are equally important, when the filamentation instability saturates in 1D. Their balance is apparently the saturation mechanism of the filamentation instability for our initial conditions. The electric force is relatively weaker but not negligible in the 2D simulation, where the electron temperature is set higher to reduce the computational cost. The magnetic pressure gradient is the principal source of the electrostatic field, when and after the instability saturates in the 1D simulation and in the 2D simulation.Comment: 10 pages, 6 figures, accepted by the Plasma Physics and Controlled Fusion (Special Issue EPS 2009
    corecore