26,465 research outputs found

    Flight investigation of insect contamination and its alleviation

    Get PDF
    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges

    Clearcutting in Appalachia: Impacts on Stream Water Quality in an Appalachian Watershed

    Get PDF
    Clearcutting forests has the potential to impact the water quality of high water headwater streams. In this study, we measured the effect of forest clearcut events on parameters of stream water quality within Michaux State Forest. The watershed of two streams included 2.1% and 11.6% of the total catchment in clearcuts, while the other 4 watersheds had no clearcuts. We measured pH, electrical conductivity, total suspended solids, and nitrate (ppm) and phosphate (ppm) concentrations from six different tributary streams. Mann-Whitney U tests maintain no statistical difference observed between pH (U= 4.00, p= 1.00), temperature (U=1.00, p=0.165), electrical conductivity (U=2.00, p=0.355), suspended solids (U=2.00, p=0.325), nitrate concentration (U=2.00, p=0.264), or phosphate concentration (U=2.00, p=0.340). However, post-hoc analysis confirms stream 6 as an upper outlier for electrical conductivity (EC= 86.8 uS). This may be due to this site’s proximity to a busy road. These results suggest that there is no significant impact of clearcutting on stream water quality in Michaux State Forest. However, further repetition of this experiment would be necessary to make this conclusion statistically robust

    S-Net for multi-memory multicores

    Get PDF
    Copyright ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming: http://doi.acm.org/10.1145/1708046.1708054S-Net is a declarative coordination language and component technology aimed at modern multi-core/many-core architectures and systems-on-chip. It builds on the concept of stream processing to structure dynamically evolving networks of communicating asynchronous components. Components themselves are implemented using a conventional language suitable for the application domain. This two-level software architecture maintains a familiar sequential development environment for large parts of an application and offers a high-level declarative approach to component coordination. In this paper we present a conservative language extension for the placement of components and component networks in a multi-memory environment, i.e. architectures that associate individual compute cores or groups thereof with private memories. We describe a novel distributed runtime system layer that complements our existing multithreaded runtime system for shared memory multicores. Particular emphasis is put on efficient management of data communication. Last not least, we present preliminary experimental data

    On the soft X-ray spectrum of cooling flows

    Get PDF
    Strong evidence for cooling flows has been found in low resolution X-ray imaging and spectra of many clusters of galaxies. However high resolution X-ray spectra of several clusters from the Reflection Grating Spectrometer (RGS) on XMM-Newton now show a soft X-ray spectrum inconsistent with a simple cooling flow. The main problem is a lack of the emission lines expected from gas cooling below 1--2 keV. Lines from gas at about 2--3 keV are observed, even in a high temperature cluster such as A 1835, indicating that gas is cooling down to about 2--3 keV, but is not found at lower temperatures. Here we discuss several solutions to the problem; heating, mixing, differential absorption and inhomogeneous metallicity. Continuous or sporadic heating creates further problems, including the targetting of the heat at the cooler gas and also the high total energy required. So far there is no clear observational evidence for widespread heating, or shocks, in cluster cores, except in radio lobes which occupy only part of the volume. The implied ages of cooling flows are short, at about 1 Gyr. Mixing. or absorption, of the cooling gas are other possibilities. Alternatively, if the metals in the intracluster medium are not uniformly spread but are clumped, then little line emission is expected from the gas cooling below 1 keV. The low metallicity part cools without line emission whereas the strengths of the soft X-ray lines from the metal-rich gas depend on the mass fraction of that gas and not on the abundance, since soft X-ray line emission dominates the cooling function below 2 keV.Comment: 5 pages, with 2 figures, submitted to MNRA

    Delineation of the boundaries of a buried pre-glacial valley with LANDSAT-1 data

    Get PDF
    The continuity of a narrow meandering strip of Udoll (prairie) soils running east and west for approximately 40 miles across north central Indiana in an area predominantly of Udalfs (timber soils) was detected from LANDSAT-1 data taken on June 9, 1973. This data was processed through a clustering procedure and classified with resulting increased definition of the boundaries among soils grouped according to nine categories and vegetation to two categories of reflectance. This dark stretch of prairie soil is believed to have formed in the heavy textured, poorly drained glacial debris which filled a major pre-glacial tributary of the Teays River System. Ready identification and location of the valley has significance to soil survey and land classification people as a guide to soil classification and land use and to geologists as a guide to location of a potentially economically significant aquifer

    On the evolution of cooling cores in X-ray galaxy clusters

    Full text link
    (Abridged) To define a framework for the formation and evolution of the cooling cores in X-ray galaxy clusters, we study how the physical properties change as function of the cosmic time in the inner regions of a 4 keV and 8 keV galaxy cluster under the action of radiative cooling and gravity only. The cooling radius, R_cool, defined as the radius at which the cooling time equals the Universe age at given redshift, evolves from ~0.01 R200 at z>2, where the structures begin their evolution, to ~0.05 R200 at z=0. The values measured at 0.01 R200 show an increase of about 15-20 per cent per Gyr in the gas density and surface brightness and a decrease with a mean rate of 10 per cent per Gyr in the gas temperature. The emission-weighted temperature diminishes by about 25 per cent and the bolometric X-ray luminosity rises by a factor ~2 after 10 Gyrs when all the cluster emission is considered in the computation. On the contrary, when the core region within 0.15 R500 is excluded, the gas temperature value does not change and the X-ray luminosity varies by 10-20 per cent only. The cooling time and gas entropy radial profiles are well represented by power-law functions. The behaviour of the inner slopes of the gas temperature and density profiles are the most sensitive and unambiguous tracers of an evolving cooling core. Their values after 10 Gyrs of radiative losses, T_gas ~ r^0.4 and n_gas ~ r^(-1.2) for the hot (cool) object, are remarkably in agreement with the observational constraints available for nearby X-ray luminous cooling core clusters. Because our simulations do not consider any AGN heating, they imply that the feedback process does not greatly alter the gas density and temperature profiles as generated by radiative cooling alone.Comment: 8 pages. MNRAS in pres

    Extensions of the space trajectories error analysis programs

    Get PDF
    A generalized covariance analysis technique which permits the study of the sensitivity of linear estimation algorithms to errors in a priori statistics has been developed and programed. Several sample cases are presented to illustrate the use of this technique. Modifications to the Simulated Trajectories Error Analysis Program (STEAP) to enable targeting a multiprobe mission of the Planetary Explorer type are discussed. The logic for the mini-probe targeting is presented. Finally, the initial phases of the conversion of the Viking mission Lander Trajectory Reconstruction (LTR) program for use on Venus missions is discussed. An integrator instability problem is discussed and a solution proposed

    Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

    Full text link
    The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal behavior can be achieved in optomechanical systems, but performance in these last two attributes has been limited. Here we demonstrate an efficient, frequency-converting microwave isolator based on the optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz. We characterize the nonreciprocal noise performance of the device, observing that the residual thermal noise from the mechanical environments is routed solely to the input of the isolator. Our measurements show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for dynamic control of the direction of isolation. With these advantages, similar devices could enable programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently bridging the microwave and optical domains.Comment: 9 pages, 6 figure
    corecore