1,585 research outputs found

    Gravity from the entropy of light

    Full text link
    The holographic principle, considered in a semiclassical setting, is shown to have direct consequences on physics at a fundamental level. In particular, a certain relation is pointed out to be the expression of holography in basic thermodynamics. It is argued moreover that through this relation holography can be recognized to induce gravity, and an expression for the gravitational lensing is obtained in terms of entropy over wavelength of black-body radiation, or, at a deeper level, in terms of maximum entropy over associated space to the elementary bit of information.Comment: 7 pages; v2: completion of the list of references; v3: the discussion is divided in Sections and the argument is described in more detail; v4: a statement is added (below eq.13) on what is the supposed difference between Jacobson's work in ref.21 and this attempt; addition of a paragraph in last Sectio

    Growth and instability of a laminar plume in a strongly stratified environment

    Get PDF
    Experimental studies of laminar plumes descending under gravity into stably stratified environments have shown the existence of a critical injection velocity beyond which the plume exhibits a bifurcation to a coiling instability in three dimensions or a sinuous instability in a Hele-Shaw flow. In addition, flow visualization has shown that, prior to the onset of the instability, a stable base flow is established in which the plume penetrates to a depth significantly smaller than the neutral buoyancy depth. Moreover, the fresh water that is viscously entrained by the plume recirculates within a ‘conduit’ whose boundary with the background stratification appears sharp. Beyond the bifurcation, the buckling plume takes the form of a travelling wave of varying amplitude, confined within the conduit, which disappears at the penetration depth. To determine the mechanisms underlying these complex phenomena, which take place at a strikingly low Reynolds number but a high Schmidt number, we study here a two-dimensional arrangement, as it is perhaps the simplest system which possesses all the key experimental features. Through a combination of numerical and analytical approaches, a scaling law is found for the plume’s penetration depth within the base flow (i.e. the flow where the instability is either absent or artificially suppressed), and the horizontal cross-stream velocity and concentration profile outside the plume are determined from an asymptotic analysis of a simplified model. Direct numerical simulations show that, with increasing flow rate, a sinuous global mode is destabilized giving rise to the self-sustained oscillations as in the experiment. The sinuous instability is shown to be a consequence of the baroclinic generation of vorticity, due to the strong horizontal gradients at the edge of the conduit, a mechanism that is relevant even at very low Reynolds numbers. Despite the strength of this instability, the penetration depth is not significantly affected by it, instead being determined by the properties of the plume in the vicinity of the source. This scenario is confirmed by a local stability analysis. A finite region of local absolute instability is found near the source for sinuous modes prior to the onset of the global instability. Sufficiently far from the source the flow is locally stable. Near the onset of the global instability, varicose modes are also found to be locally, but only convectively, unstable

    Dye diffusion during laparoscopic tubal patency tests may suggest a lymphatic contribution to dissemination in endometriosis: A prospective, observational study

    Get PDF
    Aim Women with adenomyosis are at higher risk of endometriosis recurrence after surgery. This study was to assess if the lymphatic vessel network drained from the uterus to near organs where endometriosis foci lied. Methods A prospective, observational study, Canadian Task Force Classification II-2, was conducted at Sacro Cuore Don Calabria Hospital, Negrar, Italy. 104 white women aged 18–43 years were enrolled consecutively for this study. All patients underwent laparoscopy for endometriosis and a tubal dye test was carried out. Results Evidence of dye dissemination through the uterine wall and outside the uterus was noted in 27 patients (26%) with adenomyosis as it permeated the uterine wall and a clear passage of the dye was shown in the pelvic lymphatic vessels regardless whether the tubes were unobstructed. Histological assessment of the uterine biopsies confirmed adenomyosis. Conclusion Adenomyosis is characterized by ectatic lymphatics that allow the drainage of intrauterine fluids (the dye and, perhaps, menstrual blood) at minimal intrauterine pressure from the uterine cavity though the lymphatic network to extrauterine organs. Certainly, this may not be the only explanation for endometriosis dissemination but the correlation between the routes of the dye drainage and location of endometriosis foci is highly suggestive

    Mixing by Swimming Algae

    Full text link
    In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimmers. Finally, we also show evidence of possible cooperative motion and synchronization between swimming algal cells.Comment: 1 page, APS-DFD 2009 Gallery of Fluid Motio

    Exploring relationships between the distribution of giant red shrimp Aristaeomorpha foliacea (Risso, 1827) and environmental factors in the Central-Western Mediterranean Sea

    Get PDF
    Mediterranean giant red shrimp Aristaeomorpha foliacea (Risso, 1827) is one of the dominant species in deep-sea megafaunal assemblages, plays a key role in deep-sea communities and it is considered one of the most important targets of deep-water trawl fishing. Although a large number of studies have analysed the spatial distribution of epibenthic crustaceans in bathyal habitats with respect to environmental, geomorphological and hydrological factors, as well as fishing pressure, the manner in which these variables synergistically affect the spatio-temporal changes of giant red shrimp is unclear. To analyse the possible effects of abiotic predictors on the spatio-temporal distribution of giant red shrimp, Generalized Additived Models (GAMs) and Regression Trees were produced. Biological data were collected during the MEDITS trawl surveys carried out in the Sea of Sardinia (2009-2014), during which environmental data were obtained with a multiparametric probe. A longitudinal (west-east) trend was found, with higher abundances at depths of 400-600 m, corresponding to salinity values of 38.1-38.5 psu and temperatures of 13.6-13.8°C. Our results confirm the existence of a tight linkage between the distribution of the Levantine Intermediate Water (LIW) from the eastern Mediterranean Sea and the preferential habitat characteristics of the giant red shrimp. We suggest that a deeper knowledge of the relationships between abiotic (hydrological) factors in the water column and the distribution of Mediterranean resources, such as the giant red shrimp, can provide valuable support for their better management, at the local scale (Sardinia) and across the whole Mediterranean Sea. al use only

    GPS-based monitoring of land subsidence in the Po Plain (Northern Italy)

    Get PDF
    We use regional and local networks of continuously-operating GPS stations (CGPS) distributed in the northern–central part of the Italian peninsula to investigate the subsidence phenomenon of the Po plain sedimentary basin and vertical movements of the surrounding areas. The observations of 146 scientific and commercial stations are analyzed and compared, adopting analytical techniques widely used to study GPS coordinate time series. The use of simple antenna supports in commercial installations, instead of a more rigorous geodetic monument, does not seem to induce significant differences in the noise characteristics and in the amplitudes of annual and semi-annual periodic signals. The vertical velocity field deduced from 129 sites with observation time spans greater than one year, located in the Central–Northern Italian Peninsula, indicates the presence of two mainly subsidence areas: the Po Plain and the Arno Plain, while the sites located in the Alps and Apennine domains show relatively low uplift. The areas of the Po Plain monitored by GPS seem to indicate that the subsidence rate is constant or, in some cases, decreasing with respect to the values obtained from the last measurements, performed up to 2006 by means of both SAR and levelling techniques. Only the central part of the eastern Po Plain close to the Apennine border (Modena city area) is characterized by a peak in subsidence consisting in a velocity of about 15 mm/yr

    Instabilities and Solitons in Minimal Strips.

    Get PDF
    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.This work was supported in part by the UK EPSRC through Grant No. A.MACX.0002 (TM and GPA) and an EPSRC Established Career Fellowship (R. E. G. and A. I. P.). TM also supported by a University of Warwick Chancellor’s International Scholarship and by a University of Warwick IAS Early Career Fellowship.This is the final version of the article. It first appeared from the American Physical Society via http://dx.doi.org/10.1103/PhysRevLett.117.01780

    Instability of a Möbius strip minimal surface and a link with systolic geometry

    Get PDF
    We describe the first analytically tractable example of an instability of a nonorientable minimal surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-covering of the circle. Numerical and analytical methods are used to determine the instability threshold by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows excellent qualitative agreement with that found experimentally for a closely related surface. A connection is proposed between systolic geometry and the instability by showing that the shortest noncontractable closed geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode
    corecore