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Instability of a Möbius Strip Minimal Surface
and a Link with Systolic Geometry
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We describe the first analytically tractable example of an instability of a nonorientable minimal
surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks
Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is
opened up from a double-covering of the circle. Numerical and analytical methods are used to deter-
mine the instability threshold by solution of the Jacobi equation on the double-cover of the surface.
The unstable eigenmode shows excellent qualitative agreement with that found experimentally for
a closely related surface. A connection is proposed between systolic geometry and the instability by
showing that the shortest non-contractable closed geodesic on the surface (the systolic curve) passes
near the maximum of the unstable eigenmode.

PACS numbers: 47.20.Ky, 02.40.-k, 68.15.+e

The subject of this paper lies at the intersection of sev-
eral branches of physics and mathematics: minimal sur-
faces, soap films, topological transitions, computation,
and shortest closed noncontractible geodesics on surfaces,
known as systolic curves [1] . Euler’s discovery in 1744 [2]
of the catenoid as the area-minimizing surface spanning
two circular loops effectively began the study of minimal
surfaces, which are now known to play a role in areas
as diverse as soap films [3], supramolecular assemblies
[4], defect structures [5], as well as general relativity [6],
string theory [7], and even architecture [8].

Of particular interest for centuries has been not only
the issue of determining a minimal surface supported by
a given ‘frame’, but also the competition between differ-
ent possible surfaces on the same frame [9]. Thus, in the
case of two parallel circular rings whose separation H is
varied, the catenoid solution ceases to be the minimum
energy state beyond a calculable value H∗, and ceases
to exist at all beyond a critical value Hc (> H∗). For
H∗ < H < Hc the lower energy state is the Goldschmidt
solution [10]; discs spanning each loop, connected by a
singular line segment. In laboratory realizations of this
setup with soap films, slow variation of the spacing be-
yond Hc triggers collapse of the catenoid with a complex
set of neck-pinching singularities [11, 12], leading dynam-
ically to the Goldschmidt solution (minus the unphysical
connection). Dynamics akin to the Rayleigh-Plateau in-
stability occur not only in capillary phenomena but even
in exotic contexts as the instability of black strings [13].

The catenoid is important in the study of minimal sur-
faces because its high degree of symmetry and simplicity
make it possible to determine in detail the nature of its
linear instability at Hc from the second variation of the
area functional [14]. The unstable eigenfunction at the
instability point is the solution of the Jacobi equation
(∇2 − 2K)u = 0, where K is the Gaussian curvature.
Axisymmetry of the catenoid reduces the Jacobi equa-

tion to a one-dimensional Schrödinger equation with a
sech-squared potential. This approach has been extended
to transitions between the helicoid and the catenoid [15],
locally isometric surfaces that interconvert without a sin-
gularity.

Recent work has indicated that when the frame sup-
porting a soap film is deformed so as to render it unstable,
the location and character of the ensuing singularity that
marks the topological transition depend on the topology
of the initial minimal surface. For example, the catenoid
instability leads to a singularity in the bulk of the film,
whereas a Möbius strip minimal surface transforms to a
disc through a boundary singularity [16–18]. Moreover,
at least in these two cases, we observed that the location
of the singularity (bulk or boundary) can be determined
by studying the topology of the systolic curve on the sur-
face [1, 19]. Historically, there has been great interest in
such curves [20], but apart from quantum error correc-
tion [21], it appears that there have been no applications
of systolic geometry in physics.

Given that the prototype models for topological tran-
sitions of a bounded film are the catenoid (for bulk sin-
gularities) and the Möbius strip (for boundary singulari-
ties), it is natural to seek an analytically tractable exam-
ple of an instability for a nonorientable surface. Here we
present one, using the surface known as Meeks Möbius
strip [22]. This is a complete surface [23] with total cur-
vature (the surface integral of K) of −6π. As is well
known, the only stable complete minimal surfaces in R3

are planes [24, 25]. One therefore deduces that it is im-
possible to continue any bounded non-planar minimal
surface to its complete form without it becoming unsta-
ble at a finite size. One of our primary results is the
identification, for the Meeks surface, of a one-parameter
family of contours defining a sequence of bounded sur-
faces which, like the catenoid, are stable below a thresh-
old parameter value and unstable above. We deduce the
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FIG. 1. (color online) Incomplete Meeks Möbius minimal surfaces. Two views are shown for each choice of the parameter r0.
Surfaces for r0 . 0.54 are linearly unstable.

point of instability through a combination of straightfor-
ward analytical approximations and numerical studies of
the Jacobi equation. In a further connection between sys-
tolic geometry and stability theory, we show that the sys-
tolic curve on the unstable minimal surface approaches
the maximum of the unstable eigenfunction, confirming
one’s intuition that the instability begins at the narrow-
est part of the neck.

The Meeks Möbius surface [22] is most compactly given
by its Weierstrass-Enneper Representation I [23] in terms
of a holomorphic function f(ζ) = i(ζ − 1)2/ζ4 and a
meromorphic function g(ζ) = ζ2(ζ+ 1)/(ζ−1), with fg2

holomorphic. These functions provide the components of
the vector Φ = (f(1 − g2), if(1 + g2), 2fg) which, with
ζ = u+ iv, determines the surface X(u, v) = <e[

∫
dζ ′Φ],

where X(u, v) = (x, y, z) are the Cartesian coordinates.
This representation guarantees that the mean curva-
ture vanishes and that the parameterization (u, v) cor-
responds to ‘isothermal’ coordinates. Indeed, the metric
is ds2 = W

(
du2 + dv2

)
, where W = |f |2(1 + |g|2)2, and

the Gaussian curvature is K = −4|g′|2|f |−2(1 + |g|2)−4.
If we write u = r cos θ, v = r sin θ, then the surface

takes on a particularly simple form,

x = −α sin θ − β sin 2θ − γ sin 3θ (1)

y = α cos θ + β cos 2θ + γ cos 3θ (2)

z = −2α sin θ . (3)

where α = r − r−1, β = r2 + r−2, γ = (1/3)
(
r3 − r−3

)
.

Alternatively, if r = ep, α = 2 sinh p, β = 2 cosh(2p), and
γ = (2/3) sinh(3p). The complete surface is traced out
as a double-covering for 0 ≤ r ≤ ∞ (−∞ ≤ p ≤ ∞)
and 0 ≤ θ ≤ 2π. These representations make clear
immediately the fundamental symmetry of the surface:
X(r, θ) = −X(1/r, θ + π) or X(p, θ) = −X(−p, θ + π).
While the (r, θ) parameterization is more intuitive, with
r a radial coordinate, the (p, θ) choice is often more con-
venient for algebraic and computational purposes.

When the parameter r (or p) is restricted to a finite in-
terval whose endpoints are consistent with the symmetry

of the surface, i.e. r0 ≤ r ≤ 1/r0, the resulting surface is
a Möbius strip with boundary (x(r0, θ), y(r0, θ), z(r0, θ)).
Figure 1 shows the progression of surface shapes as r0 is
decreased from unity. Since the surface given by r0 → 1
is clearly stable, while that for r0 → 0 is unstable, there
must exist a finite critical value that determines the onset
of the instability. That critical point can be determined
by finding the value of r0 for which the second varia-
tion of the area functional vanishes. This is equivalent
to seeking a displacement field ψ(u, v) normal to the sur-
face which vanishes on the boundary and is a solution
of the Jacobi equation,

(
∇2 − 2KW

)
ψ = λWψ, for the

particular case λ = 0, where now ∇2 = ∂uu + ∂vv . For
a physical soap film of thickness h, λ = −ρhω2/σ, where
ρ is the film density, σ is the surface tension, and ω is
the oscillation frequency [15]. The condition λ = 0 thus
marks the boundary between oscillatory behavior and in-
stability. In the variables (p, θ) the Jacobi equation is

ψpp+ψθθ+4
cosh 2p+ 2 sinh p cos θ + 2 sin2 θ

(cosh p cosh 2p− sinh 2p cos θ)2
ψ = 0. (4)

Because we are dealing with a non-orientable surface, we
use an orientable double covering, for which it is possible
to find a global normal vector field. In this double cov-
ering the normal vector satisfies n̂(p, θ) = −n̂(−p, θ+ π)
[equivalently n̂(r, θ) = −n̂(1/r, θ + π)]. Thus, in order
to obtain a physically meaningful displacement vector
field ψn̂ we require ψ(p, θ) = −ψ(−p, θ+π) [equivalently
ψ(r, θ) = −ψ(1/r, θ + π)].

We discuss first the numerical solution of Eq. 4,
and the determination of the critical value pc and the
unstable eigenfunction ψc. Because of the antisymme-
try discussed above it is only necessary to solve the
problem for 0 ≤ θ ≤ π, with the boundary condition
ψ(p, 0) = −ψ(−p, π), along with the Dirichlet bound-
ary condition at the bounding curve, ψ(±pc, θ) = 0.
These boundary conditions can readily be accommodated
within a standard finite-difference scheme on a regular
grid in both θ and p. If, however, one uses the more phys-
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FIG. 2. (color online) The critical surface. (a) The term −2KW in the (r, θ) plane for r0 = 0.545. (b) Unstable eigenfunction
ψc on the double-cover. (c) Critical surface, color-coded by the magnitude of ψc.

ical parameter r then a hyperbolic grid r(m) = r
2m/M−1
0

for m = 1, 2, . . . ,M allows easy implementation of the
boundary conditions. We determined the instability
threshold by finding, for a coarse grid spacing, the value
of p for which there first appears a zero eigenvalue of the
matrix corresponding to the finite-difference discretiza-
tion of Eq. 4. Refinement of the grid was used to sharpen
this numerical estimate to pc ' −0.607 (rc ' 0.545).

Figures 2a,b show, for p = pc and on the double cover-
ing, the quantities KW , which enters the Jacobi equation
(4), and the numerically obtained critical mode ψc. The
maximum amplitude of the Gaussian curvature term is
anticorrelated with the maxima of the modes. The lat-
ter (Fig. 2b) are located approximately at the center of
each covering (Fig. 2b). Because the Jacobi equation
describes the oscillations of a curved soap film, and the
Gaussian curvature term is small in the interior of the
domain, the mode shape approximates that of a flat film
clamped at its edges. This lowest eigenfunction has the
minimum possible number of nodes. Figure 2c shows the
critical Meeks surface (p = pc) color-coded by the am-
plitude of ψc. The maximum amplitude occurs in the
‘throat’ of the surface, which is locally similar in shape
to a catenoid, and directly opposite the nodal line in ψc
at θ = π. This nodal line coincides with the line of sym-
metry of the surface, which is the unique straight line
on it. The arrows in Fig. 2c represent the vectorial dis-
placement field ψcn̂ along the systolic curve (discussed
below). The pattern of displacements shown is qualita-
tively identical to that observed in experiment [16, 18],
where the interface collapses towards the frame.

From the results in Figure 2 we see that the critical
mode ψc has a large amplitude in regions where the Gaus-
sian curvature term −2KW is small, and the Dirichlet
condition ψc = 0 on the surface boundary dominates
the locally large value of the Gaussian curvature there.
Therefore, the presence of K makes only a minor change
to the shape of the unstable mode. This lack of cor-
relation between KW and ψ suggests that an approxi-
mate analytical approach to solving the Jacobi equation
is to reduce it to a one-dimensional equation by averag-

ing over the periodic variable θ. This integration yields
the approximate Jacobi equation ψpp−2KW ψ ' 0. The

average KW is a complicated combination of hyperbolic
functions that, remarkably, can be represented with great
accuracy (∼ 1%) by a sum of sech-squared terms,

ψpp + U0

{
sech2 [α (p− a)] + sech2 [α (p+ a)]

}
ψ = 0 ,

(5)
where a = 0.4456, aα = tanh−1(

√
5/7), and U0 = α2.

Thus, integration over the angular variables for both the
catenoid and the Meeks surface yield one-dimensional
Schrödinger equations, the former having a sech-squared
potential, and the latter with one of the variants of
the Morse-Rosen double-well potential [26] introduced by
Stec [27]. Through the change of variables q = tanhαp
Eq. (5) reduces to a Heun equation [28]. Rather than
dealing with a global solution of that equation, we focus
only on the region far from the double-well minima

(
1− q2

)
ψqq − 2qψq +

1 + κ2

1− κ2
ψ = 0 , (6)

where κ2 = tanh2(αa) = 5/7. Thus (1 + κ2)/(1− κ2) =
n(n + 1) for n = 2. This has solution ψ = Q2(p) =
(αp/2)(3 tanh2(αp) − 1) − (3/2) tanh(αp), the Legendre
function of the second kind. The requirement that ψ = 0
on the boundary is satisfied by p∗ = ±0.6178 . . . such
that Q2(p∗) = 0, which yields r0 ' 0.539, within 1% of
the numerical result.

When the condition KWψ ' KW ψ is satisfied the
resulting one-dimensional equation (5) is a Schrödinger
equation for a bounded double-well potential. A charac-
teristic of this potential is that for energies close to zero
(i.e. energies close to those of free particle states) approx-
imating the double well potential by two delta functions
of appropriate amplitude and located at the position of
the minima yields a surprisingly good first approxima-
tion to the wave function. For the Meeks Möbius surface
the potential is replaced by U0 [δ(p+ a) + δ(p− a)] . The
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FIG. 3. (color online) Properties of the systolic curve. (a) The
critical Meeks Möbius surface with the numerically obtained
systolic curve (green), and approximation (red). (b) Systolic
curve (green) and approximation (yellow) traced out in the
(r, θ) plane, superimposed over the unstable mode.

resulting mode is an antisymmetric function:

ψ = N


−U0a

2 − (U0a− 1)p p < −a
p |p| ≤ a
U0a

2 − (U0a− 1)p p > a

(7)

where N is a normalization constant. For the values
U0 ' 7.73 and a ' 0.445 listed above, the mode vanishes
at pc ' ±0.627 which corresponds to 0.534 ≤ r ≤ 1.872.
This is a remarkably good result given the simplicity of
this type of approximation, which is used in many areas
of quantum mechanics [29]. Similarly, for a single-well
potential (appropriate to the catenoid [15]), by replac-
ing 2 sech2 p with 2δ(p) the resulting mode consists of
a symmetric triangular function with the correct linear
asymptotic growth as x → ±∞. The critical value pc
that determines stability of the shape is pc = 1 instead
of the exact value pc = 1.2 which, though not as accurate
as for the double well, is still not a bad approximation.

An alternative approach to the determination of pc
is to view the term −2KW in the Jacobi equation as
a perturbation εV to the Dirichlet eigenvalue equation(
∇2 + εV

)
ψ = λψ for a flat rectangular membrane.

Writing ψ = ψ0 + εψ1 + · · · and λ = λ0 + ελ1 +
· · · , one finds the standard perturbation theory result

λ1 =
∫ ∫

dθdpV ψ2
0/
∫ ∫

dθdpψ2
0 . Then, using the low-

est eigenfunction consistent with the boundary condi-
tions, ψ0 ∼ cos θ cos(πp/2p0), the critical value pc is that
which makes the first-order-corrected eigenvalue equal to
zero. We obtain numerically the condition pc ' 0.536
(rc ' 0.585), in good agreement with the results above.

We now turn to the systolic curve on a Meeks Möbius
surface. In the absence of analytical results on the shape
of such a geodesic, we employ a numerical scheme intro-
duced recently [18]. This method is based on the use of
the curve length L as a Lyapunov function in a gradient
flow relaxational scheme. In isothermal coordinates,

L =

∫ 2π

0

dθ

[
E

(
dr

dθ

)2

+G

]1/2
, (8)

where E = Xr · Xr, and G = Xθ · Xθ. If we define
g = Er2θ + G, then we use a local Rayleigh dissipation
function [30] to obtain, rt = −(1/

√
g)δL/δr, which is the

nonlinear diffusion equation

∂r

∂t
=

1
√
g

∂

∂θ

(
E
√
g

∂r

∂θ

)
− 1

2g

(
Er

(
∂r

∂θ

)2

+Gr

)
. (9)

This is a version of the curve-shortening equation [31] on
a curved manifold [32]. Our goal is to find the function
r(θ) for which the r.h.s. of (9) vanishes. Since the Meeks
surface contains the circle r = 1, this may be taken as
a suitable initial condition for the dynamics. This curve
naturally has a linking number of 1 with respect to the
boundary curve, a property that is maintained through-
out the evolution.

The numerically obtained systolic curve CM for the
critical Meeks surface is shown in Fig. 3a, superimposed
on the surface. As in other examples studied to date
[18], much of this systolic curve lies on the catenoid-
like neck of the surface. Figure 3b shows, on a contour
plot of the unstable eigenfunction ψc, that CM passes
very near the maximum of the unstable mode. An
approximate analytical form for the systole is cos θ =
−(1/2) sinh p − cosh p tanh 2p, which coincides with the
result of extremizing the denominator in Eq. 4 with re-
spect to p only. This approximation shares with the full
numerical result the feature of tracking the ridge in the
Gaussian curvature and passes near the maximum of the
marginal eigenfunction. Previously [18], we conjectured
that if the local systolic curve C is linked to the bound-
ary ∂S then the singularity that occurs when the minimal
surface becomes unstable will be on ∂S, otherwise it will
be in the bulk. The present results lead to the additional
conjecture that when a neck on a minimal surface S be-
comes unstable the local systolic curve C passes through
the neighborhood of the maximum of the unstable mode.

In the same way that the catenoid serves as a paradigm
for the study of bulk singularities that follow from in-
stabilities of an orientable minimal surface, the results
presented here suggest that the truncated Meeks Möbius
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strip is the counterpart for the study of boundary singu-
larities occurring in nonorientable surfaces. Furthermore,
the correspondence between systolic curves, the critical
points of the curvature potential −2KW , and the struc-
ture of the unstable eigenfunction is reminiscent of Wit-
ten’s formulation of Morse theory [33] and suggests an
avenue for future analysis.
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