1,718 research outputs found
Merged Two-Stage Power Converter With Soft Charging Switched-Capacitor Stage in 180 nm CMOS
In this paper, we introduce a merged two-stage dc-dc power converter for low-voltage power delivery. By separating the transformation and regulation function of a dc-dc power converter into two stages, both large voltage transformation and high switching frequency can be achieved. We show how the switched-capacitor stage can operate under soft charging conditions by suitable control and integration (merging) of the two stages. This mode of operation enables improved efficiency and/or power density in the switched-capacitor stage. A 5-to-1 V, 0.8 W integrated dc-dc converter has been developed in 180 nm CMOS. The converter achieves a peak efficiency of 81%, with a regulation stage switching frequency of 10 MHz.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation
Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications
This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides a substantial increase in captured energy during partial shading conditions, while at the same time enabling significant overall cost reductions. This is achieved through direct integration of miniature MPPT power converters into existing junction boxes. We describe the design and implementation of a high-efficiency (>;98%) synchronous buck MPPT converter, along with digital control techniques that ensure both local and global maximum power extraction. Through detailed experimental measurements under real-world conditions, we verify the increase in energy capture and quantify the benefits of the architecture.National Science Foundation (U.S.) (Grant 0925147
Thin-film composite forward osmosis membranes functionalized with graphene oxideâsilver nanocomposites for biofouling control
Š 2016 Elsevier B.V. Innovative approaches to prevent bacterial attachment and biofilm growth on membranes are critically needed to avoid decreasing membrane performance due to biofouling. In this study, we propose the fabrication of anti-biofouling thin-film composite membranes functionalized with graphene oxideâsilver nanocomposites. In our membrane modification strategy, carboxyl groups on the graphene oxideâsilver nanosheets are covalently bonded to carboxyl groups on the surface of thin-film composite membranes via a crosslinking reaction. Further characterization, such as scanning electron microscopy and Raman spectroscopy, revealed the immobilization of graphene oxideâsilver nanocomposites on the membrane surface. Graphene oxideâsilver modified membranes exhibited an 80% inactivation rate against attached Pseudomonas aeruginosa cells. In addition to a static antimicrobial assay, our study also provided insights on the anti-biofouling property of forward osmosis membranes during dynamic operation in a cross-flow test cell. Functionalization with graphene oxideâsilver nanocomposites resulted in a promising anti-biofouling property without sacrificing the membrane intrinsic transport properties. Our results demonstrated that the use of graphene oxideâsilver nanocomposites is a feasible and attractive approach for the development of anti-biofouling thin-film composite membranes
Scaling of solar wind e and the AU, AL and AE indices as seen by WIND
We apply the finite size scaling technique to quantify the statistical properties of fluctuations in AU, AL and AE indices and in the parameter that represents energy input from the solar wind into the magnetosphere. We find that the exponents needed to rescale the probability density functions (PDF) of the fluctuations are the same to within experimental error for all four quantities. This self-similarity persists for time scales up to ~4 hours for AU, AL and and up to ~2 hours for AE. Fluctuations on shorter time scales than these are found to have similar long-tailed (leptokurtic) PDF, consistent with an underlying turbulent process. These quantitative and model-independent results place important constraints on models for the coupled solar wind-magnetosphere system
SprayâDried Mesoporous Mixed CuâNi Oxide@Graphene Nanocomposite Microspheres for High Power and Durable LiâIon Battery Anodes
Exfoliated grapheneâwrapped mesoporous CuâNi oxide (CNO) nanocast composites are developed using a straightforward nanostructure engineering strategy. The synergistic effect of hierarchical mesoporous CNO nanobuilding blocks that are homogeneously wrapped by graphene nanosheets (GNSs) using a rapid spray drying technique effectively preserves the electroactive species against the volume changes resulting from the charge/discharge process. Owing to the intriguing structural/morphological features arising from the caging effect of exfoliated graphene sheets, these 3D/2D CNO@GNS nanocomposite microspheres are promising as highâperformance Liâion battery anode materials. They exhibit unprecedented electrochemical behavior, such as high reversible specific capacity (initial discharge capacities exceeding 1700 mAh gâ1 at low 0.1 mA gâ1, stable 850 and 730 mAh gâ1 at 1 and 5 mA gâ1 after 800 and 1300 cycles, respectively, and higher than 400 mAh gâ1 at very high current density of 10 mA gâ1 after more than 2000 cycles), excellent coulombic efficiency and longâterm stability (more than 3000 cycles with >55% capacity retention) at high current density that are remarkable compared to most transition metal oxides and nanocomposites prepared by conventional techniques. This simple, yet innovative, material design is inspiring to develop advanced conversion materials for Liâion batteries or other energy storage devices
Multi-Muscle FES Force Control of the Human Arm for Arbitrary Goals
We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subjectâs hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals
- âŚ