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The Simultaneous Model-based Estimation of
Joint, Muscle, and Tendon Stiffness is Highly

Sensitive to the Tendon Force-Strain
Relationship

Christopher P. Cop, Kristen L. Jakubowski, Alfred C. Schouten, Bart Koopman, Eric J. Perreault, and
Massimo Sartori

Abstract— Objective: Accurate estimation of stiffness
across anatomical levels (i.e., joint, muscle, and tendon)
in vivo has long been a challenge in biomechanics. Re-
cent advances in electromyography (EMG)-driven muscu-
loskeletal modeling have allowed the non-invasive estima-
tion of stiffness during dynamic joint rotations. Neverthe-
less, validation has been limited to the joint level due to a
lack of simultaneous in vivo experimental measurements of
muscle and tendon stiffness. Methods: With a focus on the
triceps surae, we employed a novel perturbation-based ex-
perimental technique informed by dynamometry and ultra-
sonography to derive reference stiffness at the joint, mus-
cle, and tendon levels simultaneously. Here, we propose
a new EMG-driven model-based approach that does not
require external joint perturbation, nor ultrasonography, to
estimate multi-level stiffness. We present a novel set of
closed-form equations that enables the person-specific tun-
ing of musculoskeletal parameters dictating biological stiff-
ness, including passive force-length relationships in mod-
eled muscles and tendons. Results: Calibrated EMG-driven
musculoskeletal models estimated the reference data with
average normalized root-mean-square error ≈ 20 %. More-
over, only when calibrated tendons were approximately four
times more compliant than typically modeled, our approach
could estimate multi-level reference stiffness. Conclusion:
EMG-driven musculoskeletal models can be calibrated on a
larger set of reference data to provide more realistic values
for the biomechanical variables across multiple anatomical
levels. Moreover, the tendon models that are typically used
in musculoskeletal modeling are too stiff. Significance:
Calibrated musculoskeletal models informed by experimen-
tal measurements give access to an augmented range of
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biomechanical variables that might not be easily measured
with sensors alone.

Index Terms— Joint stiffness, muscle stiffness, muscu-
loskeletal modeling, tendon stiffness.

I. INTRODUCTION

Movement disorders such as those arising from stroke [1],
cerebral palsy [2], spinal cord injury [3], or chronic pain [4]
dramatically disrupt musculoskeletal impedance at all anatom-
ical levels, i.e., joint, muscle and tendon. Impedance is the
dynamic relationship between an imposed displacement and
the resultant force or torque [5]. Neurorehabilitation should
aim at re-establishing normative musculoskeletal impedance-
and force-generating capacity for an individual person [6]. For
instance, clinicians might need to understand what muscles
actively and passively contribute to a joint’s reduced range of
motion [7] to inform personalized surgical, robotic or physical
training interventions. Consequently, a fundamental challenge
in the fields of biomechanics, motor control, and physical
rehabilitation has long been measuring muscle impedance
noninvasively, using minimal experimental setups, across a
broad range of functionally relevant conditions in health and
disease [8].

Experiment-based approaches for the estimation of joint
impedance have been proposed for controlled movements in a
laboratory setup [9], [10]. They combine measurements from
sensorized robotic manipulators, that are used to apply external
perturbations to an individual’s biological joint, with system
identification algorithms to estimate joint-level biomechanical
variables in an accurate way. Recent work incorporated muscle
ultrasonography and electromyography (EMG) measurements,
leading to a novel methodology to identify the contributions
of muscle and tendon to the net joint impedance and stiffness,
or position-dependent component of impedance [11], via
robotic-induced perturbations to the target biological joint.
However, direct measurements are time-consuming and re-
quire a complex laboratory setup. Additionally, the need for
external joint perturbations and specialized equipment, such
as dynamometers and ultrasonography, limits measurements to
highly controlled motor tasks that are often not representative
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of daily movements and decreases translation to clinical or
day-to-day settings where complex instrumentation may not
be viable.

EMG-driven modeling is a computational tool that has been
widely used to estimate muscle-tendon unit (MTU) forces and
resulting joint torques from experimentally recorded EMGs
and joint angles [12], [13]. In this context, it is critical to derive
closed-form equations that capture relevant MTU passive and
contractile dynamics, as well as to calibrate underlying model
parameters to best estimate experimentally recorded joint
torques [12], [14]. Our recent developments in EMG-driven
musculoskeletal modeling enabled, for the first time, the simul-
taneous estimation of joint torque and stiffness during dynamic
joint rotations in intact humans in vivo [15]. Importantly, the
proposed framework allowed the estimation of joint stiffness
without the need of external perturbations, which enabled, for
the first time, the study of biological stiffness both in presence
and absence of external perturbations. Consequently, the effect
that external perturbations have on joint stiffness could be
assessed.

However, it is unclear to what extent an EMG-driven model
that has been fitted to joint-level biomechanical variables can
estimate muscle- and tendon-level variables, such as mus-
cle and tendon stiffness and muscle displacement. Previous
validations of muscle and tendon properties estimated from
EMG-driven models of human movement have been limited by
the lack of reference muscle- and tendon-level biomechanical
variables. Joint-level accuracy does not necessarily ensure
muscle-level accuracy, as muscle-level phenomena, such as
short-range stiffness, might not be reflected at the joint level
because each joint is spanned by multiple agonist and an-
tagonist muscles, i.e., muscle redundancy [16]. A new set of
closed-form equations and the calibration of additional MTU
parameters might be required to capture muscle dynamics.

In this study, we propose an EMG-driven musculoskeletal
model that relies on a set of closed form equations that
enables the person-specific tuning of musculoskeletal features
that influence stiffness at multiple anatomical levels, i.e., joint,
muscle, and tendon levels. This enables adjustments in tendon
stiffness and muscle passive stiffness, in addition to other
force-generating parameters, i.e., muscle optimal fiber length,
tendon slack length, maximum isometric force, pennation
angle at optimal fiber length, and a “shape factor” to non-
linearly scale measured EMGs to obtain muscle activations.
With a focus on the triceps surae, we systematically validate
our proposed approach at the joint, muscle, and tendon levels
against reference stiffness data derived via system identifica-
tion informed by perturbation-based dynamometry and ultra-
sonography. We demonstrate that tendon units widely modeled
in the literature employed too stiff force-strain characteristics
and that modeling a more compliant tendon is critical for
the estimations of stiffness across anatomical levels in EMG-
driven models.

Our proposed methodology enables multi-level stiffness
estimation across a wide repertoire of movements. Moreover,
it does not require joint perturbations, nor ultrasonography,
to estimate stiffness across anatomical levels, thus facilitating
the translation of this technology to the clinics, e.g., to guide

rehabilitation interventions, and out of the lab.

II. METHODS

A. Participants
Twelve healthy volunteers (age range: 26–36 years, 6 males)

with no self-reported history of neurological or ankle im-
pairments participated in this study. All participants tested
right leg dominant using the Waterloo Footedness question-
naire. The Northwestern University Institutional Review Board
approved the experimental procedures (STU00009204 and
STU00213839) and all subjects provided written informed
consent. The experiments complied with the Declaration of
Helsinki.

B. Apparatus
Fig. 1 summarizes the experimental setup. Participants were

seated in an adjustable chair (Biodex Medical Systems, Inc.
Shirley, NY, USA) with their right leg extended in front of
them. The knee was stabilized at 15° of flexion with a brace
(Innovator DLX, Ossur, Reykjavik, Iceland), which prevented
movement at the proximal end of the biarticular gastrocne-
mius medialis (GM) and gastrocnemius lateralis (GL). We
rigidly secured the participant’s foot to an electric rotary
motor (BSM90N-3150AF, Baldor, Fort Smith, AR, USA) via a
custom-made fiberglass cast. The cast completely encased the
foot while preserving the full range-of-motion of the ankle.
We aligned the ankle center of rotation in the sagittal plane
with the center of rotation of the motor and restricted all
movement and rotation to the sagittal plane. Electrical and
mechanical safety stops limited the rotation of the motor
within the participant’s range of motion. An encoder (24-
bit, PCI-QUAD04, Measurement Computing, Norton, MA).
integrated within the motor measured ankle angle, while a
six-degree-of-freedom load cell (45E15A4, JR3, Woodland,
CA, USA) measured all ankle forces and torques. xPC Target
(MATLAB, Mathworks, Natick, MA) controlled the motor in
real-time. We used a position control scheme such that the
motor dictated the position of the participant’s ankle at all
times.

EMG data were collected at 2500 Hz from the GM, GL,
soleus (SO), and tibialis anterior (TA) using single differential
bipolar surface electrodes (Bagnoli, Delsys Inc, Boston, MA,
10 mm interelectrode distance). Standard skin preparation
techniques were used before applying each electrode to the
skin [18]. Electrodes were placed on the belly of the respective
muscle. All kinematic, kinetic, and EMG data were passed
through an antialiasing filter (500 Hz using a 5-pole Bessel
filter) and sampled at 2.5 kHz using a 24-bit data acquisition
system (PCI-6289, Measurement Computing, Norton, MA,
USA). EMG data were collected for the visual feedback
provided to the subjects and to drive the musculoskeletal
model.

We rigidly secured a B-mode ultrasound probe
(LV7.5/60/128Z-2 Telemed, Lithuania) to the leg to image the
GM muscle-tendon junction (MTJ). We have demonstrated
previously that the results during active isometric contractions
do not vary when imaging the various triceps surae muscles
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Fig. 1. Schematic of the experimental setup. The participant’s foot
was secured to the rotary motor via a custom-made cast. Ankle angle
was rigidly controlled by the rotary motor while a 6-degree-of-freedom
load cell measured the resultant ankle torque. B-mode ultrasound was
used to image the muscle-tendon junction of the medial gastrocnemius.
A knee brace prevented any unwanted knee flexion or extension.
Participants were provided real-time visual feedback of their mean
plantarflexor (PF) and tibialis anterior (TA) EMG. Figure adapted from
Jakubowski et al. 2023 [17].

(GM vs. GL vs. SO) [11]. We positioned the probe parallel
to the muscle belly (longitudinally) such that the MTJ was
centered on the image. Ultrasound data had a mean frame
rate of 124 Hz and were synchronized with all measurements
from the rotary motor.

C. Experimental data

1) Protocol: Before starting the experiment, participants
performed maximum voluntary contractions (MVC) trials to
obtain EMG normalization factors. Participants completed
three MVC trials in both plantarflexion and dorsiflexion di-
rections with the ankle angle fixed at 10° of plantarflexion,
each lasting 10 s. Our primary objective was to quantify ankle,
muscle, and tendon stiffness during movement. Therefore, the
participant’s ankle was moved through a sinusoidal motion
with an amplitude of 20° and a frequency of 0.5 Hz. The
movement was centered at 10° of plantarflexion. Small rota-
tional perturbations were superimposed on the large sinusoidal
movement. We used pseudo-random binary sequence (PRBS)
perturbations with an amplitude of 0.14 rad, a maximum
velocity of 1.75 rad/s, and a switching time of 153 ms.
Twenty-one trials were collected, each lasting 40 s. This large
number was needed for the time-varying system identification
described below. During each trial, participants were instructed
to produce and sustain plantarflexor EMG activity at 20%
of MVC. The plantarflexor EMG activity was defined as the
normalized mean of the EMG from the GM, GL, and SO,
the major ankle plantarflexors. Real-time visual feedback of
plantarflexor EMG was shown on a screen. We also provided
TA EMG feedback to prevent co-contraction (Fig. 1). Practice
was allowed so participants could become proficient with the
task. Rest breaks were provided between each trial to prevent
fatigue.

2) Signal processing: All data processing and analysis was
completed using custom-written software in MATLAB. The
same experimenter manually digitized the MTJ within each

frame of the ultrasound video. Ultrasound data were synchro-
nized with all other data [19], and linearly interpolated to the
sampling rate of all other data (2.5 kHz).

To obtain normalized EMG envelopes, raw EMG recordings
were band-pass filtered with a fourth order Butterworth notch
filter (cutoff frequencies: [59 61] Hz) to remove the 60 Hz
powerline interference, demeaned, rectified, smoothed using
a moving mean window of 250 ms, and normalized by the
maximum value of the MVC recording.

Prior to further processing, all data were decimated to 100
Hz.

3) Ankle, muscle, and tendon stiffness: Ankle, muscle, and
tendon impedance and stiffness were estimated from the
experimentally measured ankle angle, ankle torque, and MTJ
displacement (Section II-B) via non-parametric system identi-
fication (Fig. 2).

To calculate impedance during time-varying conditions, the
system identification algorithm requires multiple repetitions
of repeated data [20]. Therefore, all data were segmented
into overlapping three-period long segments. Each segment
started one period after the previous one. The realization was
removed if the TA was active. The TA was deemed active if
the activation within the realization exceeded 5% MVC. We
used the 200 realizations where the mean plantarflexor EMG
had the lowest mean-squared error relative to 20% MVC (the
targeted activation).

To quantify ankle, muscle, and tendon impedance, we used
our recently developed method [11]. Briefly, the experimental
measures of ankle angle, ankle torque, and MTJ displace-
ment were used in these calculations. Ankle impedance was
quantified from the relationship between the imposed ankle
rotations and the resultant ankle torque [5]. We assumed that
the muscle and tendon are connected in series [21], and
muscle-tendon unit displacement can be determined by the
rotation of the ankle multiplied by the Achilles tendon moment
arm. Moreover, we assume that the proximal end of the muscle
is fixed, and, thus, any movement of the MTJ is a measure of
muscle length change. Based on these assumptions, muscle
and tendon impedance can be estimated from the estimates
of ankle impedance and the translation ratio—the relation-
ship between MTJ displacement and the angular rotations
of the ankle. Specifically, to estimate ankle impedance and
the translation ratio, we used a non-parametric time-varying
system identification algorithm [20]. The algorithm computed
the time-varying impulse response functions (IRFs) for ankle
impedance and the translation ratio at each time point along
the movement profile. The stiffness, or position-dependent
component of ankle impedance, and the translation ratio were
computed by integrating the IRFs. From the estimates of ankle
stiffness and the static translation ratio, we estimated muscle
and tendon stiffness algebraically [11].

We used a bootstrapping procedure to calculate the con-
fidence intervals for our ankle, muscle, and tendon stiffness
estimates. The 200 realizations were sampled randomly with
replacement to produce a new ensemble of 200 realizations.
The new ensemble was then used to compute stiffness. We
repeated this procedure 100 times, resulting in a distribution
of stiffnesses.
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A single approximation of the Achilles tendon moment arm
of 51.3 mm was used for all analyses. The moment arm was
estimated as the mean across subjects from Clarke et al. [22]
with an ankle angle of 10° of plantarflexion.

Fig. 2. Sample data from a representative subject. There are 6-second
snippets of ankle angle, torque, gastrocnemius medialis (GM) muscle-
tendon junction (MTJ) displacement, and electromyography (EMG) data,
from a single realization (gray) and the mean from the 200 realizations
(black). The shaded black region is the standard deviation across
the 200 realizations. These data were used to obtain a task-specific
estimation of ankle, muscle, and tendon stiffness.

D. EMG-driven musculoskeletal model

This work extends the EMG-driven modeling framework
we recently developed [15]. We introduce an extended set of
closed-form equations to estimate forces and stiffness across
multiple anatomical levels, i.e., joint, tendon, and muscle lev-
els. This new formulation and the reference data set at multiple
anatomical levels enable, for the first time, the calibration of
the stiffness of the modeled tendons and the muscle passive
stiffness. To best match the assumptions of the experimental
approach II-C.3, the EMG-driven model used in this study
comprises three MTUs with elastic tendons: GM, GL, and
SO. The EMG-driven modeling pipeline (Fig. 3) is outlined
below.

1) Activation dynamics: Muscle excitations, u, here defined
as the normalized EMG envelopes, are mapped into MTU
activations (a) without an intermediate muscle fiber twitch
model using the following equation:

a =
eAu − 1

eA − 1
(1)

where A ∈ (-3, 0) is a MTU-specific parameter named shape
factor that scales the level of muscle co-contraction.

2) MTU kinematics: Joint angles are mapped into MTU
length using a set of multi-dimensional B-splines [23]. To
be consistent with the assumptions made in the experimental
approach [11], a constant moment arm, r, (r = 51.3 mm [22])
was used for all modeled muscles.

3) MTU dynamics:: MTU force, FMTU , is computed using
a Wijngaarden–Dekker–Brent optimization to solve the equi-
librium equation between tendon force, FT , and muscle fiber
force, FM :

FMTU = FT = FM cosϕ (2)

where ϕ is the MTU’s pennation angle, that is computed
using the following expression, assuming a constant muscle
thickness:

ϕ = arcsin

(
sinϕo

l̃M

)
(3)

where l̃M is normalized muscle fiber length (l̃M = lM /lMo , with
lM and lMo being muscle fiber length and muscle optimal fiber
length, respectively) and ϕo is the MTU’s pennation angle at
lMo .
FT is computed using a generic dimensionless tendon force

strain relationship, ft(ϵ
T ) (adapted from [24]), where ϵT is

tendon strain (ϵT = lT /lTs - 1, with lT and lTs being tendon
length and tendon slack length, respectively), scaled by the
MTU’s maximum isometric force, Fmax:

FT = Fmaxft(ϵ
T ) (4)

ft(ϵ
T ) = Gt

(
a1 exp

[
a2

(
ϵT + a3

)]
− a4

)
(5)

where Gt ∈ (0.05, 1.5) is a newly introduced MTU parameter
that scales the tendon stiffness. The values of the coefficients
a1, a2 a3 and a4 can be found in Table III (Appendix I).
FM is computed as a function of a, l̃M , and normalized

muscle contraction velocity, ṽM (ṽM = vM /vmax, with vM

and vmax = 10 lMo /s being muscle contraction velocity and
maximum contraction velocity, respectively), using generic
dimensionless active force-length, fa(l̃M ) (the sum of three
gaussian functions, adapted from [24] to best match the cubic
spline used in [15], [25]), force-velocity, fv(ṽ

M ) (adapted
from [26] to best match the cubic spline used in [15], [25]), and
passive force-length, fp(l̃M ), relationships, scaled by Fmax:

FM = Fmax

(
afa(l̃

M )fv(ṽ
M ) + fp(l̃

M )
)

(6)

fa(l̃
M ) =

3∑
i=1

b1i exp

−0.5
(
l̃M − b2i

)2

(
b3i + b4i l̃M

)2

 (7)

fv(ṽ
M ) = c1 −

c1

1 + exp
[
c2−ṽM

c3

] (8)

fp(l̃
M ) = Gpd1

(
l̃M

)11

(9)

where Gp ∈ (0.7, 1.3) is a newly introduced MTU parameter
that scales the muscle passive stiffness. The values of the
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Fig. 3. (a) EMG-driven model: the “Activation dynamics” block maps experimental muscle excitations into muscle-tendon unit (MTU) activations.
The “MTU kinematics” block maps ankle plantar-dorsiflexion angle into MTU length. The “MTU dynamics” block estimates MTU force and stiffness
employing a Hill-type muscle model driven by MTU activation and length with an elastic tendon. The “Ankle torque and stiffness computation”
block projects MTU force and stiffness onto the the joint level via the MTU moment arm to obtain estimates of joint torque and stiffness. (b) Model
calibration: Seven parameters per MTU, namely optimal fiber length, tendon slack length, maximum isometric force, shape factor, pennation angle at
optimal fiber length, stiffness of the tendon force-strain curve and stiffness of the muscle passive force-length curve, are adjusted to best track input
reference ankle torque, ankle stiffness, GM displacement, muscle stiffness, and tendon stiffness profiles using the EMG-driven model described in
(a). A simulated annealing optimization routine is used to adjust MTU parameters to minimize the difference between reference (plots in black) and
estimated (plots in blue) biomechanical variables.

coefficients b1i, b2i b3i, b4i, for i = 1· · · 3, c1, c2, c3, and
d1 can be found in Table III (Appendix I).

MTU stiffness, KMTU , is computed as the series arrange-
ment of the tendon’s stiffness, KT , and the equivalent muscle
fiber’s stiffness in the tendon’s line of action, KM

eq , [15]:

KMTU =

(
KT−1

+KM
eq

−1
)−1

(10)

KT is computed as:

KT =
Fmax

lTs
kt(ϵ

T ) (11)

with kt(ϵ
T ) = dft(ϵ

T )
dϵT

.
KM

eq is computed as [27]:

KM
eq = KM cos2 ϕ+

FM

lM
sin2 ϕ (12)

where

KM =
Fmax

lMo

(
aka(l̃

M )fv(ṽ
M ) + kp(l̃

M )
)

(13)

with ka(l̃
M ) = dfa(l̃

M )

dl̃M
and kp(l̃

M ) =
dfp(l̃

M )

dl̃M
.

4) Ankle torque and stiffness computation: Forces of the
three modeled MTUs are projected via r into the joint level
to obtain ankle torque τA:

τA =

3∑
j=1

rFMTU
j (14)

where FMTU
j represents the force of the jth MTU spanning

the joint.
The net ankle joint (rotational) stiffness, KA, is computed

as:

KA =

3∑
j=1

r2KMTU
j (15)

where KMTU
j represents the stiffness of the jth MTU span-

ning the joint.
5) Model calibration across anatomical levels: For each sub-

ject, seven parameters per MTU, i.e., lMo , lTs , Fmax, A,
ϕo, Gt, and Gp, are calibrated using a simulated annealing
optimization routine [28] that minimizes the following multi-
term objective function:

Fobj = avg(T1EτA + T2EKA + T3E∆GM+

+ T4(EKT
AT

+ EKM
TS

))p (16)
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where EτA , EKA , E∆GM , EKT
AT

, and EKM
TS

are the mean
squared errors, normalized by the variance of the reference
signal, between reference and estimated ankle torque, ankle
stiffness, GM displacement, Achilles tendon stiffness, and
triceps surae muscle stiffness, respectively, T1, T2, T3, and
T4 are weighting coefficients that determine the contribution
of each biomechanical variable to the objective function, and
p ≥ 1 is a penalty factor that constrains MTUs to operate
within a physiological range, i.e., p penalizes normalized
muscle lengths (l̃M < 0.65 or l̃M > 1.35) and negative tendon
strains (lT < lTs ).

E. Data analysis

The reference data set included ankle torque, ankle stiffness,
displacement of the GM MTJ, Achilles tendon stiffness, and
triceps surae muscle stiffness. Our EMG-driven modeling
framework explicitly computes ankle torque and ankle stiff-
ness. As an approximation for the displacement of the GM
MTJ, changes in modeled GM fiber length in the direction of
the tendon’s line of action were computed (∆GM = lMGMϕGM

) and centered around 0. Assuming that all modeled triceps
surae muscles are in parallel, approximations for Achilles
tendon stiffness, KT

AT , and triceps surae muscle stiffness,
KM

TS , were computed by summing the tendon stiffness of

the three modeled muscles (KT
AT =

3∑
j=1

KT
j ) and the muscle

stiffness of the three modeled muscles (KM
TS =

3∑
j=1

KM
j ),

respectively.
A calibration data set was created by averaging all 200

repetitions of the experiment to obtain reference ankle torque
and GM displacement, and by averaging all 100 estimates of
reference ankle stiffness, muscle stiffness, and tendon stiffness.
A validation data set of 15 different trials was created by
averaging 15 subsets of 100 randomly selected repetitions of
experimental measurements of ankle torque and GM displace-
ment, and by averaging 15 subsets of 50 randomly selected
estimates of reference ankle stiffness, muscle stiffness, and
tendon stiffness.

For each subject, a generic OpenSim model [29] was
linearly scaled to match their height. To ensure each MTU’s
operating range was preserved after linear scaling, the values
for lMo and lTs were optimized using a previously proposed
method [30]. We refer to this model as “Uncalibrated”. Lastly,
each MTU’s lMo , lTs , Fmax, A, ϕo, Gt, and Gp were further
adjusted using our proposed calibration procedure (Section II-
D.5) to best fit reference data (Fig. 3). In this study, the
weighting coefficients T1, T2, T3, and T4 were binary. In
this regard, four different EMG-driven model calibration types
were defined based on what reference data were used to inform
the calibration. These were chosen to represent experiments
of different complexity from measuring only joint torque to
measuring all joint and muscle variables available in our data
set. We refer to the resulting calibrated models as “Type
1”, “Type 2”, “Type 3”, and “Type 4”. Table I describes
each calibration type. MTU parameters were constrained to
the following ranges of values: lMo , lTs , and ϕo could vary

50 % from their initial value, Fmax could vary from 30 % to
250 % of the starting value, A ∈ (-3, 0), and Gp ∈ (0.7, 1.3).
Regarding Gt, two different prior tendon force-strain curves
were investigated:

1) The curve adapted from De Groote et al. [24] (Eq. 5 with
Gt = 1 as prior, with Gt ∈ (0.05, 1.5) during calibration).

2) A lower stiffness tendon defined as the average tendon
force-strain curve across all Type 4 calibrated EMG-
driven models using the aforementioned De Groote
tendon as prior. The resulting tendon force-strain curve
was defined by Gt = 0.278, and was allowed to vary
± 30 % during calibration, i.e., Gt ∈ (0.195, 0.362).

TABLE I
MODEL CALIBRATION TYPES DEFINED IN THIS STUDY

Reference data used to calibrate the model

EMG-driven Ankle Ankle GM Tendon and
model torque stiffness displacement muscle stiffness

Type 1 Yes No No No
Type 2 Yes Yes No No
Type 3 Yes Yes Yes No
Type 4 Yes Yes Yes Yes

Each EMG-driven model was calibrated using the calibra-
tion data set. All calibrations were performed on a 64-core
processor (AMD Ryzen Threadripper 3990X) and 128 GB
RAM workstation, with computation times of approximately
20 minutes per calibration.

Per subject, five EMG-driven models, i.e., Uncalibrated,
Type 1, Type 2, Type 3, and Type 4, were then used to estimate
ankle torque, ankle stiffness, triceps surae muscle stiffness,
Achilles tendon stiffness, and GM displacement using the
validation data set, i.e., different EMGs and ankle angles to
those employed for calibration.

Estimated biomechanical variables resulting from EMG-
driven modeling simulations were compared to reference data
from our experimental approach by computing the root-mean-
square error normalized by the root-mean-square of the refer-
ence (nRMSE).

III. RESULTS

The performance of all calibration types using both tendon
force-strain curves as prior (Section II-E) was assessed by
comparing estimated biomechanical variables to reference
values. Table II summarizes average nRMSE across all sub-
jects for each biomechanical variable and for each EMG-
driven model. The highest average nRMSE was found for
the Uncalibrated model using the De Groote 2016 tendon as
prior (nRMSE = 170.1 ± 63.0 %), and the lowest average
nRMSE was found for the Type 4 model using the De Groote
2016 tendon as prior (nRMSE = 22.7 ± 7.0 %). Average
nRMSE decreased with increasing calibration complexity, i.e.,
using more reference data to inform the calibration. For each
biomechanical variable, average nRMSE was lowest when that
specific biomechanical variable was first introduced in the
calibration. In this regard, average ankle torque nRMSE was
lowest for Type 1 model, average ankle stiffness nRMSE was

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3324485

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

lowest for Type 2 model, average GM displacement nRMSE
was lowest with the Type 3 model, and average Achilles
tendon stiffness and triceps surae muscle stiffness nRMSEs
were lowest with the Type 4 model.

Fig. 4 shows, for each subject, the average time profiles
of all five biomechanical variables obtained using the EMG-
driven model calibrated only on reference joint torque, i.e.,
Type 1, and using the best performing calibrated EMG-
driven model, i.e., Type 4. On average, nRMSEs for ankle
torque, ankle stiffness, triceps surae muscle stiffness, Achilles
tendon stiffness, and GM displacement were 2.5 ± 1.7 %,
19.3 ± 6.5 %, 58.7 ± 17.7 %, 197.5 ± 134.2 %, and
38.9 ± 8.7 %, respectively, for the Type 1 model, and
17.6 ± 5.8 %, 17.8 ± 8.1 %, 24.1 ± 15.0 %, 16.4 ± 4.2 %,
and 25.5 ± 8.1 %, respectively, for the Type 4 model.

Using the De Groote 2016 tendon as prior, average tendon
stiffness nRMSEs were always above 100% when reference
tendon stiffness data were not used to calibrate the model,
i.e., for Uncalibrated, Type 1, Type 2, and Type 3 models
(Table II). Fig. 5.(a) shows that the average tendon force-
strain curve of the Type 1 model was stiffer than published
experimental in vivo Achilles tendon force-strain curves [31].
When including reference tendon stiffness data to calibrate the
model, i.e., Type 4 model, resulting tendon force-strain curves
were more similar to reported in vivo data. Using a lower
stiffness tendon as prior resulted in tendon force-strain curves
that were similar to in vivo data, regardless of whether the
EMG-driven model was calibrated without reference tendon
stiffness data, e.g., Type 1, or with reference tendon stiffness
data, i.e., Type 4 (Fig. 5.(b)).

Fig. 6 shows the average nRMSE across all subjects and
all five biomechanical variables for all defined EMG-driven
models using both the De Groote 2016 tendon as prior and
the lower stiffness tendon as prior. Average nRMSE decreased
with increasing calibration complexity.

IV. DISCUSSION

We presented a model-based framework to estimate biolog-
ical stiffness across anatomical levels that does not require
ultrasonography nor external joint perturbations applied by a
robotic manipulator. A new set of closed-form equations, in
combination with muscle- and tendon-level reference data al-
lowed, for the first time, the calibration of MTU characteristics
such as the tendon force-strain and the muscle passive force-
length relationships. A key result is that using a more compli-
ant tendon, i.e., approximately four times more compliant than
typically modeled, significantly improved stiffness estimation
accuracy across anatomical levels in an EMG-driven model
calibrated solely using reference joint torque.

First, we used a standard tendon force-strain curve (adapted
from De Groote 2016) as a prior in our simulations. We
demonstrated that a calibrated EMG-driven musculoskeletal
model, i.e., Type 4 model, with a single set of MTU param-
eters can accurately estimate biomechanical variables across
multiple anatomical levels (average nRMSE ≈ 20 %, Fig. 4,
Table II). Our results showed that with a standard calibration
attempting to solely fit joint torques, i.e., Type 1 model, even

though ankle torque was closely matched (nRMSE ≈ 5 %), the
underlying muscle- and tendon-level biomechanical variables
were not agreeing with experimental measurements (Fig. 4).
This represents a clear example of muscle redundancy, where
a given joint torque can be obtained by infinite combinations
of underlying muscle states. Furthermore, redundancy within
a MTU could also be defined, as a certain MTU force can
underlie infinite combinations of muscle and tendon stiffness.
Our results could have broad implications in the context
of established or emerging modeling frameworks such as
OpenSim [7], [32], AnyBody [33], or MyoSuite [34], which
currently disregard muscle, tendon, and joint stiffness.

We then compared the tendon force-strain curves of two
different calibrated models, i.e., Type 1 and Type 4, to previ-
ously published in vivo data [31] (Fig. 5(a)) that, in line with
other experimental studies [35], [36], reported rather compliant
Achilles tendons, i.e., stiffness between 150–190 Nmm−1.
Our results showed that calibrations that are not informed
by reference tendon stiffness result in tendon force-strain
curves that are stiffer than in vivo data, suggesting that the
standard tendon force-strain relationships that are normally
used in musculoskeletal modeling are too stiff. This finding
is also supported by the fact that reference tendon stiffness
could only be matched using a more compliant tendon force-
strain relationship. The experimental measurements of tendon
stiffness used here have previously been validated against
in vivo measurements and direct measures from cadaveric
samples [11]. It was demonstrated that outside of the lowest
force levels (<100 N), estimated tendon stiffness was within
one standard deviation of previous measures [35], [37]. In
movements where tendon stiffness is greater than muscle
stiffness, such as the movement investigated in this study, a
stiffer tendon force-strain curve does not affect the estimation
of joint-level biomechanical variables, such as joint torque and
stiffness. Nevertheless, it leads to muscle- and tendon-level es-
timates that are not physiologically consistent. Conversely, in
movements where tendons are more compliant than muscles,
and thus dictate joint stiffness, such as standing [38], a stiffer
tendon will lead to biased joint stiffness estimations.

Our novel modeling formulation enabled the calibration
of Gt, i.e., a newly introduced model parameter that scales
tendon stiffness. Consequently, when we used reference tendon
stiffness profiles to inform the model calibrations, the resulting
tendon force-strain curves were similar to in vivo data. In
this way, not only joint-level biomechanical variables were
closely matched, but also tendon- and muscle-level variables
(Fig. 4, Table II). This example highlights the importance
of combining data obtained from an experimental approach
with a musculoskeletal modeling framework. We obtained
a calibrated model that can accurately estimate biomechan-
ical variables across multiple levels in a noninvasive way.
Moreover, we gained access to biomechanical variables that
were or could not be measured experimentally, such as the
displacement of the SO or GL, or tendon strain.

We used the results of Fig. 5(a) to define a lower stiffness
tendon force-strain curve with a narrower calibration range.
In this way, regardless of whether or not the calibration was
informed by reference tendon stiffness data, the resulting
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TABLE II
AVERAGE ROOT-MEAN-SQUARE ERROR NORMALIZED BY REFERENCE ROOT-MEAN-SQUARE ACROSS ALL SUBJECTS. RESULTS EXPRESSED A

PERCENTAGE AND REPORTED AS MEAN (STANDARD DEVIATION). RESULTS OF THE MODEL WITH DE GROOTE 2016 TENDON AS PRIOR IN BLACK

FONT, AND RESULTS OF THE MODEL WITH A LOWER STIFFNESS TENDON AS PRIOR IN GRAY FONT.

EMG-driven Ankle Ankle GM Tendon Muscle Average
model torque stiffness displacement stiffness stiffness error

Uncalibrated 232.0 (148.4) 49.7 (17.2) 61.6 (13.7) 439.9 (173.5) 67.5 (50.6) 170.1 (63.0)
169.2 (121.8) 55.4 (22.9) 38.2 (12.5) 174.5 (88.9) 68.3 (33.0) 101.1 (44.3)

Type 1 5.2 (1.7) 19.3 (6.5) 38.9 (8.7) 197.5 (134.2) 58.7 (17.7) 63.9 (27.4)
6.3 (3.6) 21.0 (8.7) 37.2 (11.6) 46.6 (23.0) 48.2 (28.7) 31.9 (8.7)

Type 2 10.3 (5.6) 7.6 (2.5) 49.5 (14.1) 123.5 (102.7) 45.2 (46.9) 47.2 (24.3)
11.4 (6.2) 8.3 (3.1) 38.7 (11.2) 53.4 (19.8) 41.6 (33.3) 30.7 (9.9)

Type 3 11.4 (6.6) 9.7 (6.3) 19.8 (13.4) 104.6 (127.5) 44.2 (8.0) 37.9 (25.7)
11.4 (6.1) 8.9 (2.8) 22.7 (12.4) 53.7 (20.0) 41.1 (12.9) 27.6 (7.6)

Type 4 17.6 (5.8) 17.8 (8.1) 25.5 (8.1) 16.4 (4.2) 24.1 (15.0) 20.3 (4.7)
19.6 (7.9) 16.2 (7.7) 30.5 (13.4) 18.1 (4.2) 29.3 (18.2) 22.7 (7.0)
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Fig. 4. Average ankle torque (first row), ankle stiffness (second row), triceps surae muscle stiffness (third row), Achilles tendon stiffness (fourth row),
and GM displacement (fifth row) time profiles for each subject. Reference values, i.e., dynamometer measurements for the ankle torque, system
identification estimations obtained from perturbation-based data for joint stiffness, system identification estimations obtained from perturbation-
based data in combination with ultrasound measurements for muscle and tendon stiffness, and ultrasound measurements for GM displacement,
are depicted in black (solid line), estimations from the Type 1 calibrated EMG-driven model are depicted in red (dotted line), and estimations from
the Type 4 calibrated EMG-driven model are depicted in blue (dashed line). Results expressed as mean values (line) ± standard deviation (shaded
area). Please note that because of how the validation data set was created (Section II-E), standard deviations are in the order of magnitude of the
line thickness of the mean.

calibrated tendon force-strain curves were similar to in vivo
data (Fig. 5(b)).

Regardless of what tendon force-strain curve was used as
prior, overall fitting error decreased with increasing calibration
complexity (Fig. 6), reaching an accuracy of approximately
20 % with respect to the reference, which is in line with
previously published studies [15], [39]. This suggests that
an EMG-driven model based on the Hill-type muscle model
with a single set of MTU parameters may be calibrated to fit
forces and stiffness across anatomical levels. Moreover, our

results also indicate that, the richer the data set that is used
to inform the calibration, the more physiologically consistent
the calibrated model is. However, since only one optimiza-
tion per calibration type was performed, convergence to the
optimal set of parameters cannot be assured, and future work
should address this limitation by running multiple iterations of
the same calibration. By improving accuracy across multiple
biomechanical variables we increase our confidence in the
model, and we are getting closer to having models that can be
used in rehabilitation.
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Fig. 5. (a) Average tendon force-strain curve of Type 1 calibrated EMG-
driven models (in red), and Type 4 calibrated EMG-driven models (in
blue), using the De Groote et al. 2016 [24] tendon as prior (and Gt

∈ (0.05, 1.5)), against experimental in vivo Achilles tendon force-strain
curves from Dick et al. 2016 [31]. Results displayed as mean (solid
lines) ± standard deviation (shaded area). (b) Average tendon force-
strain curve of Type 1 calibrated EMG-driven models (in red), and Type 4
calibrated EMG-driven models (in blue), using the lower stiffness tendon
as prior (Gt = 0.278 ± 30%), against experimental in vivo Achilles
tendon force-strain curves from Dick et al. 2016 [31]. Results displayed
as mean (solid lines) ± standard deviation (shaded area).

Fig. 6. Mean fitting errors, i.e., root-mean-squared error normalized
by reference root-mean-square expressed as a percentage, across all
estimated biomechanical variables, i.e., ankle torque, ankle stiffness,
muscle stiffness, tendon stiffness, and GM displacement, and across
all subjects, for all five EMG-driven models defined per subject. Results
of the EMG-driven models using the De Groote et al. 2016 [24] tendon
as prior in black, and results using a lower stiffness tendon, i.e., Gt =
0.278, as prior, in gray. Results displayed as mean (squares) ± standard
deviation (vertical lines).

Moreover, using a more compliant tendon as prior signifi-
cantly improved overall estimations even when the model was
calibrated only using ankle torque (average nRMSE ≈ 32 %,
Table II, Fig. 6), in contrast to using the De Groote tendon
as prior (average nRMSE ≈ 64 %). Furthermore, using a
more compliant tendon as prior yielded similar results for
Type 1, Type 2, and Type 3 models, suggesting that using a

more physiologically consistent tendon might lead to accurate
models even when calibrated solely on joint torque, and
informing the calibration with more biomechanical variables
might not necessarily improve estimation capabilities. There-
fore, translation to clinical use might be facilitated as less
equipment will be needed to obtain reference data to calibrate
the model.

This work entails some limitations. To match the assump-
tions made to obtain reference data, the proposed EMG-driven
musculoskeletal model included three plantar flexor MTUs.
Moreover, a constant moment arm of 51.3 mm was used
for all subjects and MTUs, while MTU length was obtained
using MTU-specific B-splines (Section II-D.2). This modeling
choice is valid as the computed B-splines were quasi-linear
in the ankle angle range considered in this study. Future
work should use subject- and angle-specific moment arms
to compute stiffness following both the experimental and the
EMG-driven modeling approaches.

In this study we estimated stiffness using a Hill-type muscle
model in dynamic conditions. While the proposed model-
based approach is generalizable to any joint and degree of
freedom, in this paper we focus on the ankle joint due to
a lack of experimental stiffness profiles across anatomical
levels of other joints and muscles. As soon as experimental
data from other muscles and joints are available, future work
should assess the extrapolation capabilities of our proposed
method. Our results suggest that muscle and tendon stiffness,
as well as GM displacement, could be estimated in dynamic
conditions using a calibrated Hill-type muscle model that
does not explicitly model short-range stiffness or history-
dependent muscle properties. However, the calibrated models
of some participants, e.g., subjects 3 and 4, displayed larger
errors in muscle stiffness (Fig. 4), and further analyses are
required to understand if the cause of the mismatch is the
proposed modeling formulation or the experimental reference
data. Whether a Hill-type muscle model with a single set of
parameters can be used to estimate stiffness in both dynamic
and static or postural conditions remains unknown, and future
work should address this challenge. Estimating stiffness during
static conditions might require explicit formulations of short-
range stiffness [40] in parallel with the dynamic-range stiffness
formulation used in this study, tuning the muscle active
force-length curve as a way to modulate the muscle’s short
range stiffness, or the addition of history-dependent muscle
properties [41].

Furthermore, this study did not investigate the sensitivity of
the model calibration to the different MTU parameters, that
were allowed to vary widely during calibration (Section II-E)
to simultaneously fit multiple biomechanical variables. Despite
the large ranges for accepted parameter values, the penalties
that were defined in the calibration (Section II-D.5) ensured
that all muscles were operating at physiologically plausible
lengths. Moreover, we found that the soleus’ optimal fiber
length was always smaller than that of both gastrocnemii,
which is in line with previous imaging studies of the calf
muscles [42]. Future work should refine MTU parameter
boundaries in such a way that optimal calibrations are achieved
with a minimal reference data set.
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Lastly, one assumption of the experimental data is that
the estimates of muscle and tendon stiffness are estimates
of the net stiffness of the triceps surae and Achilles tendon
despite only making ultrasound measurements of the GM
MTJ. This assumption has previously been validated, as we
have found that the estimates during active contractions were
similar when imaging the GM, GL, and SO MTJs [11]. While
the proposed ankle musculoskeletal model comprises three
separate MTUs (Section II-D) that share the total load, only
the sum of their stiffnesses (Section II-E) is compared against
the reference data in this study. Future work should investigate
how individual muscles contribute to the net joint torque and
stiffness in more complex situations where the knee and ankle
are free to move.

V. CONCLUSION

We present an EMG-driven modeling framework that can
be calibrated and validated across multiple anatomical levels,
i.e., joint, muscle, and tendon levels. Our results emphasize
the importance of validating complex musculoskeletal models
across different anatomical levels, as we demonstrate that the
tendons that are normally used in musculoskeletal modeling
are too stiff. We show that more compliant tendons are
needed to better capture human biomechanics at the joint,
tendon, and muscle levels. Calibrated musculoskeletal models
informed by sensor-based measurements of biological signals
give access to an augmented range of biomechanical variables
across anatomical levels that might not be easily measured
or estimated with sensors alone, i.e., by measuring joint-
level biomechanical variables, a calibrated musculoskeletal
model can provide insights on muscle and tendon dynamics.
We envision that our innovative approach, which combines
expertise from different scientific communities, will even-
tually bridge the gap between precise measurements from
constrained experiments and computational models able to
simulate functional conditions relevant to neurorehabilitation.

APPENDIX I
HILL-TYPE MUSCLE-TENDON CHARACTERISTICS

Table III contains the values of the coefficients used in
Eqs. 5, 7, 8, and 9.
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