649 research outputs found

    Annual Meeting of the International Society of Cancer Metabolism (ISCaM): Cancer Metabolism

    Get PDF
    Tumors are metabolic entities wherein cancer cells adapt their metabolism to their oncogenic agenda and microenvironmental influences. Metabolically different cancer cell subpopulations collaborate to optimize nutrient delivery with respect to immediate bioenergetic and biosynthetic needs. They can also metabolically exploit host cells. These metabolic networks are directly linked with cancer progression, treatment, resistance, and relapse. Conversely, metabolic alterations in cancer are exploited for anticancer therapy, imaging, and stratification for personalized treatments. These topics were addressed at the 4th annual meeting of the International Society of Cancer Metabolism (ISCaM) in Bertinoro, Italy, on 19–21 October 201

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Growth Parameter Components of Adaptive Specificity during Experimental Evolution of the UVR-Inducible Mutator Pseudomonas cichorii 302959

    Get PDF
    BACKGROUND: Mutagenic DNA repair (MDR) transiently increases mutation rate through the activation of low-fidelity repair polymerases in response to specific, DNA-damaging environmental stress conditions such as ultraviolet radiation (UVR) exposure. These repair polymerases also confer UVR tolerance, intimately linking mutability and survival in bacteria that colone habitats subject to regular UVR exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigate adaptive specificity in experimental lineages of the highly UVR-mutable epiphytic plant pathogen Pseudomonas cichorii 302959. Relative fitness measurements of isolates and population samples from replicate lineages indicated that adaptive improvements emerged early in all lineages of our evolution experiment and specific increases in relative fitness correlated with distinct improvements in doubling and lag times. Adaptive improvements gained under UVR and non-UVR conditions were acquired preferentially, and differentially contributed to relative fitness under varied growth conditions. CONCLUSIONS: These results support our earlier observations that MDR activation may contribute to gains in relative fitness without impeding normal patterns of adaptive specificity in P. cichorii 302959

    Direct Heme Transfer Reactions in the Group A Streptococcus Heme Acquisition Pathway

    Get PDF
    The heme acquisition machinery in Group A Streptococcus (GAS) consists of the surface proteins Shr and Shp and ATP-binding cassette transporter HtsABC. Shp cannot directly acquire heme from methemoglobin (metHb) but directly transfers its heme to HtsA. It has not been previously determined whether Shr directly relays heme from metHb to Shp. Thus, the complete pathway for heme acquisition from metHb by the GAS heme acquisition machinery has remained unclear. In this study, the metHb-to-Shr and Shr-to-Shp heme transfer reactions were characterized by spectroscopy, kinetics and protein-protein interaction analyses. Heme is efficiently transferred from the β and α subunits of metHb to Shr with rates that are 7 and 60 times greater than those of the passive heme release from metHb, indicating that Shr directly acquires heme from metHb. The rapid heme transfer from Shr to Shp involves an initial heme donor/acceptor complex and a spectrally and kinetically detectable transfer intermediate, implying that heme is directly channeled from Shr to Shp. The present results show that Shr speeds up heme transfer from metHb to Shp, whereas Shp speeds up heme transfer from Shr to HtsA. Furthermore, the findings demonstrate that Shr can interact with metHb and Shp but not HtsA. Taken together with our published results on the Shp/HtsA reaction, these findings establish a model of the heme acquisition pathway in GAS in which Shr directly extracts heme from metHb and Shp relays it from Shr to HtsA

    Imprinting of the Polycomb Group Gene MEDEA Serves as a Ploidy Sensor in Arabidopsis

    Get PDF
    Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed “triploid block.” Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in seeds with deviating parental contributions. We identified a mutant forming unreduced pollen that enabled us to investigate direct effects of unbalanced parental genome contributions on seed development and to reveal the underlying molecular mechanism of dosage sensitivity. We provide evidence that parent-of-origin–specific expression of the Polycomb group (PcG) gene MEDEA is causally responsible for seed developmental aberrations in Arabidopsis seeds with increased paternal genome contributions. We propose that imprinted expression of PcG genes is an evolutionary conserved mechanism to balance parental genome contributions in embryo nourishing tissues

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Transcriptional Shift Identifies a Set of Genes Driving Breast Cancer Chemoresistance

    Get PDF
    Background Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor.Methods/Findings To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response), established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≤ 0·05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≤ 0.05 Benjamini-Hochgerg`s method).Conclusions These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer.Thanks are due to the Consejería de Economia, Innovación y Ciencia (CEIC) from the Junta de Andalucía and Fondo Europeo de Desarrollo Regional (FEDER)/Fondo de Cohesión Europeo (FSE) to financial support through the Programa Operativo FEDER/FSE de Andalucía 2007-2013 and the research project CTS-5350. The authors also acknowledge financial support by the PN de I+D+i 2006-2009/ISCIII/Ministerio de Sanidad, Servicios Sociales e Igualdad (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union, through the research project PI06/90388

    Exploring the Complexity of the HIV-1 Fitness Landscape

    Get PDF
    Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place
    corecore