485 research outputs found

    Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone

    Get PDF
    Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and under threat from a variety of anthropogenic factors. There is now an urgency to establish robust monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive coastal environments can be understood. Typical monitoring approaches have included remote sensing from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight (sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (∼4 mm pixel−1) mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a selection of classification techniques to produce coverage estimates at each site. We trialled three classification approaches of varying complexity to investigate and illustrate the differing performance and capabilities of each. Our results show that unsupervised classifications perform better than object-based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD) between observed and classified coverage (9–9.5%) compared to a more densely vegetated meadow (RMSD 16–22%). Furthermore, we examine the potential to detect other biotic features, finding that lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel−1, whereas smaller features such as cockle shells within seagrass require finer grained data (<17 mm pixel−1)

    Analysis of Whisker-Toughened Ceramic Components -- A Design Engineer\u27s Viewpoint

    Get PDF
    The use of ceramics components in gas turbines, cutting tools, and heat exchangers has been limited by the relatively low flaw tolerance of monolithic ceramics. The development of whisker-toughened ceramic composites offers the potential for considerable improvement in fracture toughness as well as strength. However, the variability of strength is still too high for the application of deterministic design approaches. This report reviews several phenomenological reliability theories proposed for this material system, and reports on the development of a public domain computer algorithm. This algorithm, when coupled with a general-purpose finite element program, predicts the fast fracture reliability of a structural component under multiaxial loading conditions

    Developing a novel risk prediction model for severe malarial anemia.

    Get PDF
    As a pilot study to investigate whether personalized medicine approaches could have value for the reduction of malaria-related mortality in young children, we evaluated questionnaire and biomarker data collected from the Mother Offspring Malaria Study Project birth cohort (Muheza, Tanzania, 2002-2006) at the time of delivery as potential prognostic markers for pediatric severe malarial anemia. Severe malarial anemia, defined here as a Plasmodium falciparum infection accompanied by hemoglobin levels below 50 g/L, is a key manifestation of life-threatening malaria in high transmission regions. For this study sample, a prediction model incorporating cord blood levels of interleukin-1β provided the strongest discrimination of severe malarial anemia risk with a C-index of 0.77 (95% CI 0.70-0.84), whereas a pragmatic model based on sex, gravidity, transmission season at delivery, and bed net possession yielded a more modest C-index of 0.63 (95% CI 0.54-0.71). Although additional studies, ideally incorporating larger sample sizes and higher event per predictor ratios, are needed to externally validate these prediction models, the findings provide proof of concept that risk score-based screening programs could be developed to avert severe malaria cases in early childhood

    Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania

    Get PDF
    Artemisinin-based combination therapies (ACTs) are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E) in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance

    Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.

    Get PDF
    Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool

    Multiple var2csa-Type PfEMP1 Genes Located at Different Chromosomal Loci Occur in Many Plasmodium falciparum Isolates

    Get PDF
    BACKGROUND:The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (approximately 26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. CONCLUSIONS/SIGNIFICANCE:Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria

    Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates

    Get PDF
    BACKGROUND: As malaria becomes increasingly drug resistant and more costly to treat, there is increasing urgency to develop effective vaccines. In comparison to other stages of the malaria lifecycle, sexual stage antigens are under less immune selection pressure and hence are likely to have limited antigenic diversity. METHODS: Clinical isolates from a wide range of geographical regions were collected. Direct sequencing of PCR products was then used to determine the extent of polymorphisms for the novel Plasmodium falciparum sexual stage antigen von Willebrand Factor A domain-related Protein (PfWARP). These isolates were also used to confirm the extent of diversity of sexual stage antigen Pfs28. RESULTS: PfWARP was shown to have non-synonymous substitutions at 3 positions and Pfs28 was confirmed to have a single non-synonymous substitution as previously described. CONCLUSION: This study demonstrates the limited antigenic diversity of two prospective P. falciparum sexual stage antigens, PfWARP and Pfs28. This provides further encouragement for the proceeding with vaccine trials based on these antigens

    Dynamics of the Multiplicity of Cellular Infection in a Plant Virus

    Get PDF
    Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host

    Antibodies That Induce Phagocytosis of Malaria Infected Erythrocytes: Effect of HIV Infection and Correlation with Clinical Outcomes

    Get PDF
    HIV infection increases the burden of disease of malaria in pregnancy, in part by impairing the development of immunity. We measured total IgG and phagocytic antibodies against variant surface antigens of placental-type CS2 parasites in 187 secundigravidae (65% HIV infected). In women with placental malaria infection, phagocytic antibodies to CS2VSA were decreased in the presence of HIV (p = 0.011) and correlated positively with infant birth weight (coef = 3.57, p = 0.025), whereas total IgG to CS2VSA did not. Phagocytic antibodies to CS2VSA are valuable tools to study acquired immunity to malaria in the context of HIV co-infection. Secundigravidae may be an informative group for identification of correlates of immunity
    corecore