3,020 research outputs found

    A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials

    Get PDF
    We present an inverse method to identify the spatially varying stiffness distributions in 3 dimensions. The method is an extension of the classical Virtual Fields Method—a numerical technique that exploits information from full-field deformation measurements to deduce unknown material properties—in the spatial frequency domain, which we name the Fourier-series-based virtual fields method (F-VFM). Three-dimensional stiffness distributions, parameterised by a Fourier series expansion, are recovered after a single matrix inversion. A numerically efficient version of the technique is developed, based on the Fast Fourier Transform. The proposed F-VFM is also adapted to deal with the challenging situation of limited or even non-existent knowledge of boundary conditions. The three-dimensional F-VFM is validated with both numerical and experimental data. The latter came from a phase contrast magnetic resonance imaging experiment containing material with Poisson's ratio close to 0.5; such a case requires a slightly different interpretation of the F-VFM equations, to enable the application of the technique to incompressible materials

    Fourier-series-based Virtual Fields Method for the identification of 2-D stiffness distributions

    Get PDF
    The Virtual Fields Method (VFM) is a powerful technique for the calculation of spatial distributions of material properties from experimentally-determined displacement fields. A Fourier-series-based extension to the VFM (the F-VFM) is presented here, in which the unknown stiffness distribution is parameterised in the spatial frequency domain rather than in the spatial domain as used in the classical VFM. We summarise here the theory of the F-VFM for the case of elastic isotropic thin structures with known boundary conditions. An efficient numerical algorithm based on the 2-D Fast Fourier Transform reduces the computation time by 3-4 orders of magnitude compared to a direct implementation of the F-VFM for typical experimental dataset sizes. Reconstruction of stiffness distributions with the FVFM has been validated on several stiffness distribution scenarios, one of which is presented here, in which a difference of about 0.5% was achieved between the reference and recovered stiffness distributions

    A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials

    Get PDF
    This is the peer reviewed version of the following article: Nguyen, TT and Huntley, JM and Ashcroft, IA and Ruiz, PD and Pierron, F (2017) A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials. Strain, 53 (5). e12229-e12229 which has been published in final form at 10.1111/str.12229 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." We present an inverse method to identify the spatially varying stiffness distributions in 3 dimensions. The method is an extension of the classical Virtual Fields Method—a numerical technique that exploits information from full-field deformation measurements to deduce unknown material properties—in the spatial frequency domain, which we name the Fourier-series-based virtual fields method (F-VFM). Three-dimensional stiffness distributions, parameterised by a Fourier series expansion, are recovered after a single matrix inversion. A numerically efficient version of the technique is developed, based on the Fast Fourier Transform. The proposed F-VFM is also adapted to deal with the challenging situation of limited or even non-existent knowledge of boundary conditions. The three-dimensional F-VFM is validated with both numerical and experimental data. The latter came from a phase contrast magnetic resonance imaging experiment containing material with Poisson's ratio close to 0.5; such a case requires a slightly different interpretation of the F-VFM equations, to enable the application of the technique to incompressible materials

    A Fourier-series-based Virtual Fields Method for the Identification of 2-D Stiffness and Traction Distributions

    Get PDF
    The virtual fields method (VFM) allows spatial distributions of material properties to be calculated from experimentally determined strain fields. A numerically efficient Fourier-series-based extension to the VFM (the F-VFM) has recently been developed, in which the unknown stiffness distribution is parameterised in the spatial frequency domain rather than in the spatial domain as used in the classical VFM. However, the boundary conditions for the F-VFM are assumed to be well-defined, whereas in practice, the traction distributions on the perimeter of the region of interest are rarely known to any degree of accuracy. In the current paper, we therefore consider how the F-VFM theory can be extended to deal with the case of unknown boundary conditions. Three different approaches are proposed; their ability to reconstruct normalised stiffness distributions and traction distributions around the perimeter from noisy input strain fields is assessed through simulations based on a forward finite element analysis. Finally, a practical example is given involving experimental strain fields from a diametral compression test on an aluminium disc

    The population of close double white dwarfs in the Galaxy

    Get PDF
    We present a new model for the Galactic population of close double white dwarfs. The model accounts for the suggestion of the avoidance of a substantial spiral-in during mass transfer between a giant and a main-sequence star of comparable mass and for detailed cooling models. It agrees well with the observations of the local sample of white dwarfs if the initial binary fraction is close to 50% and an ad hoc assumption is made that white dwarfs with mass less than about 0.3 solar mass cool faster than the models suggest. About 1000 white dwarfs brighter than V=15 have to be surveyed for detection of a pair which has total mass greater than the Chandrasekhar mass and will merge within 10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren ed.

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund
    • …
    corecore