
 

1/42 

 

A Fourier-series-based Virtual Fields Method for the identification of 3-D stiffness 

distributions and its application to incompressible materials 

TT Nguyen1,2, JM Huntley1, IA Ashcroft3, PD Ruiz1 and F Pierron4 

 

1 Loughborough University, Wolfson School of Mechanical, Manufacturing and Electrical 

Engineering, Loughborough LE11 3TU, UK 

2 Current address: London South Bank Innovation Centre, TWI Ltd., Granta Park, Great 

Abington, Cambridge CB21 6AL, UK 

3 University of Nottingham, Faculty of Engineering, Nottingham NG7 2RD, UK 

4 University of Southampton, Faculty of Engineering and the Environment, Highfield, 

Southampton SO17 1BJ, UK 

 

 

  

ng
tru

on
gt

ho
@

ya
ho

o.
fr



 

2/42 

 

Abstract: 

 

We present an inverse method to identify the spatially-varying stiffness distributions in three-

dimensions (3-D). The method is an extension of the classical Virtual Fields Method (VFM) 

– a numerical technique which exploits information from full-field deformation 

measurements to deduce unknown material properties – in the spatial frequency domain, 

which we name the Fourier-series-based Virtual Fields Method (F-VFM). Three-dimensional 

stiffness distributions, parameterised by a Fourier series expansion, are recovered after a 

single matrix inversion. A numerically efficient version of the technique is developed, based 

on the Fast Fourier Transform. The proposed F-VFM is also adapted to deal with the 

challenging situation of limited or even non-existent knowledge of boundary conditions. The 

3-D F-VFM is validated with both numerical and experimental data. The latter came from a 

phase contrast MRI experiment containing material with Poisson’s ratio close to 0.5; such a 

case requires a slightly different interpretation of the F-VFM equations, to enable the 

application of the technique to incompressible materials. 
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1. Introduction 

A typical characteristic of common diseases in the human body such as kidney stones or 

tumours is the presence of a hard mineral deposit or a solid stiff mass of pathological tissue 

within surrounding soft organs. Ultrasonography [1, 2] and magnetic resonance imaging 

(MRI) [3, 4] can be used to detect such inclusions non-invasively. Qualitative detection can 

often be achieved by relying on natural contrast within the scanned images or volumes, 

followed by segmentation of the pathological regions of the tissues from the others. 

Quantitative detection by mapping the distribution of material stiffness, on the other hand, 

allows for better characterisation, and therefore potential treatment, of the pathology. It does, 

however, require further analysis of these scanned images to extract strain data. Data from 

dynamic experiments can be used with a direct inversion to solve for unknown shear modulus 

distributions [5], which is not usually possible with static data; a map of static strain data can 

give topographical information of the unknown shear modulus distribution and of the 

interfaces between different phases of the tissue at the same time [6], allowing the modulus 

recovery independent of the boundary conditions. 

Biological tissues are generally considered as nearly incompressible materials [7]; 

quantitative characterisation of this type of material therefore concerns the distribution of its 

shear modulus. There exist in the literature different strategies to reconstruct spatially-varying 

modulus distributions of materials in general, and those of incompressible materials in 

particular. A direct method of inverting the elasto-static equilibrium equation for the modulus 

distributions was first published by Skovoroda et al. [8], and the uniqueness of the solution in 

2-D was examined in [9]. The principle of the method is based on mathematical 

transformation of the equilibrium equation whilst also satisfying compatibility and continuity 

conditions to establish a partial differential equation, with the modulus being the unknown 

variable. Barbone et al. [10] approached the direct method from another direction which 

requires computation of the hydrostatic pressure gradients. Recently, Sinkus et al. [11] 

proposed an alternative approach to eliminate the hydrostatic pressure term by applying a curl 

operator to the acoustic wave propagation equation. The approach, however, needs third-

order derivatives of the measured data and knowledge of local property parameters. An 

alternative technique, the finite element model updating method (see for example [12]) which 

minimizes the difference between the output of an experiment and its corresponding 

numerical simulation, is superficially attractive because it builds on sophisticated commercial 
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codes thus reducing development time. However, it has at least two drawbacks: firstly the 

link between the uncertainty in the measurements and the uncertainty in recovered parameters 

is not explicit, and secondly the fact that it is inherently an iterative algorithm makes run 

times very long in three dimensions. Recent work on reconstructing distributions of elastic 

parameters of materials are presented in [13] where the determination of local stress fields in 

sub regions across the global domain based on full-field deformation data allowed for 

subsequent computations of constitutive parameters. The local stress distributions were 

implemented through a parameterisation of Airy stress potentials using Fourier series.  

The virtual fields method (VFM) is a different approach, which is able to recover modulus 

distributions inside a material from its measured deformation data without any iterative 

calculation [14]. One drawback of the VFM is the need for spatial first derivatives of 

displacements, which amplifies the effect of measurement noise in the final results [15]. The 

first application of the VFM to modulus reconstruction of materials in 3-D has been presented 

in [16] in which the equilibrium equations are discretised by finite element ‘shape functions’. 

A wise choice of the virtual fields eliminates the unknown hydrostatic pressure and its 

gradients by zeroing the tractions on the boundary. A detailed theory of the VFM can be 

found in [14]. The technique was recently adapted to Magnetic Resonance Elastography data 

[17] using a sliding window of 64 virtual elements which have been optimised with respect to 

noise sensitivity following the approach in [15]. 

In this paper, we retain the basic concepts underlying the VFM in statics, but approach the 

parameterisation of the unknown modulus distribution in the spatial frequency domain by 

performing a 3-D Fourier series expansion over the region of interest. Virtual fields are not 

selected as polynomials of spatial variables, as in the classical VFM literature, but from a set 

of simple cosine or sine functions of different spatial frequencies. The abbreviation F-VFM 

will be used to denote the VFM in which Fourier series are used in the parameterisation of the 

modulus and for the virtual fields.  

The F-VFM was developed originally for 2-D geometries in [18] and extended in [19] to the 

case of incomplete knowledge of the boundary value distributions. In the current paper, it is 

extended for the first time to volumetric data resulting from, for example, measurements with 

Digital Volume Correlation or phase contrast Magnetic Resonance Imaging (MRI). The main 

part of the paper (Section 2) includes the theoretical development of the F-VFM in 3-D and 

its fast algorithm. Section 3 shows the results of applying the 3-D F-VFM to one numerical 
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and one experimental scenario, and Section 4 summarises the key outcomes of the proposed 

technique. 

 

2. Implementation of the F-VFM in 3-D 

2.1. Principles of the F-VFM 

2.1.1. Parameterisation of non-uniform stiffness 

The fundamental equation of the F-VFM is derived from the principle of virtual work (PVW) 

equation (integral form) written for a deformable body, which describes the balance between 

the virtual works of internal and external forces with any continuous and differentiable virtual 

displacement field (and its associated virtual strain field). In the case of a static body where 

the body force is small enough to be neglected, the equilibrium equation of the body can be 

written as in [14]: 

−∫𝛔: 𝛜∗ 𝑑𝑉

𝑉

+ ∫𝐓𝐮∗𝑑𝑆𝑓
𝑆𝑓

= 0 (1) 

The equation represents a quasi-static equilibrium state of the deformable body subjected to 

surface forces, which are represented by the traction vector 𝐓 or the density of surface forces 

acting on a small surface element 𝑑𝑆𝑓. As the body force is neglected, the surface forces are 

commonly called external forces. The (second-order) Cauchy stress tensor 𝛔 in the equation 

represents the internal forces that oppose the external forces. The equilibrium equation (1) is 

then established by multiplying these (internal and external) forces by virtual quantities to 

build up the so-called virtual work equations. The virtual quantities, those with superscript 

‘*’ throughout the paper, can be either a virtual displacement vector 𝐮∗ or a virtual strain 

tensor 𝛜∗ whose components  are tailored to derive specific equations to solve particular 

problems, and will be discussed in more detail in the next section. 

Consider now a cuboidal volume V of global dimensions Lx, Ly and Lz along the Cartesian x, y 

and z axes, respectively (see Fig. 1), containing a material with a linear elastic response to the 

applied forces. Column vector σ (we use the same notation as for the related stress tensor for 

simplicity) of length 6×1 in Eq. (1) containing six components of the Cauchy stress tensor by 

adopting Voigt’s notation, can be expressed as a product of the stiffness matrix Q and the 

vector 𝛜 containing components of strain tensor according to the constitutive relation of the 

material, resulting in a more explicit form of this equation as 
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∫𝛜∗𝐐𝛜 𝑑𝑉

𝑉

= ∫𝐓𝐮∗𝑑𝑆𝑓
𝑆𝑓

 (2) 

We now restrict our attention to the case of isotropic materials, for which the stiffness matrix 

Q is only dependent on two elastic parameters E (elastic modulus) and ν (Poisson’s ratio) as 

follows 

𝐐 =

(

 
 
 
 
 
 
 
 
 
 

1
𝜈

1 − 𝜈

𝜈

1 − 𝜈
0 0 0

𝜈

1 − 𝜈
1

𝜈

1 − 𝜈
0 0 0

𝜈

1 − 𝜈

𝜈

1 − 𝜈
1 0 0 0

0 0 0
1 − 2𝜈

2(1 − 𝜈)
0 0

0 0 0 0
1 − 2𝜈

2(1 − 𝜈)
0

0 0 0 0 0
1 − 2𝜈

2(1 − 𝜈))

 
 
 
 
 
 
 
 
 
 

𝑄𝑥𝑥 (3) 

with 𝑄𝑥𝑥 related to E and ν by the equation 

𝑄𝑥𝑥 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 (4) 

The substitution of Eq. (3) into Eq. (2) gives 

  

∫

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 

𝜖𝑥𝑥
∗

𝜖𝑦𝑦
∗

𝜖𝑧𝑧
∗

𝛾𝑦𝑧
∗

𝛾𝑧𝑥
∗

𝛾𝑥𝑦
∗ )

 
 
 
 

′

(

 
 
 
 
 
 
 
 
 
 

1
𝜈

1 − 𝜈

𝜈

1 − 𝜈
0 0 0

𝜈

1 − 𝜈
1

𝜈

1 − 𝜈
0 0 0

𝜈

1 − 𝜈

𝜈

1 − 𝜈
1 0 0 0

0 0 0
1 − 2𝜈

2(1 − 𝜈)
0 0

0 0 0 0
1 − 2𝜈

2(1 − 𝜈)
0

0 0 0 0 0
1 − 2𝜈

2(1 − 𝜈))

 
 
 
 
 
 
 
 
 
 

(

 
 
 

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝛾𝑦𝑧
𝛾𝑧𝑥
𝛾𝑥𝑦)

 
 
 
𝑄𝑥𝑥𝑑𝑉

𝑉
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= ∫(𝑇𝑥 𝑇𝑦 𝑇𝑧)(

𝑢𝑥
∗

𝑢𝑦
∗

𝑢𝑧
∗

)𝑑𝑆𝑓
𝑆𝑓

 

where 𝜖𝛼𝛼 and 𝛾𝛼𝛽 (,  = x, y, z), represent the normal and shear strain components, 

respectively, and superscript ‘*’ denotes the corresponding virtual strain components. This 

can be written in non-matrix form as 

∫𝑃(𝑥, 𝑦, 𝑧)𝑄𝑥𝑥𝑑𝑉

𝑉

= ∫(𝑇𝑥𝑢𝑥
∗ + 𝑇𝑦𝑢𝑦

∗ + 𝑇𝑧𝑢𝑧
∗)𝑑𝑆𝑓

𝑆𝑓

 (6) 

with 

𝑃(𝑥, 𝑦, 𝑧) = 𝑃 = (𝜖𝑥𝑥 +
𝜈

1 − 𝜈
(𝜖𝑦𝑦 + 𝜖𝑧𝑧)) 𝜖𝑥𝑥

∗

+ (𝜖𝑦𝑦 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑧𝑧)) 𝜖𝑦𝑦

∗  

+(𝜖𝑧𝑧 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑦𝑦)) 𝜖𝑧𝑧

∗ +
1 − 2𝜈

2(1 − 𝜈)
(𝛾𝑦𝑧𝛾𝑦𝑧

∗ + 𝛾𝑧𝑥𝛾𝑧𝑥
∗ + 𝛾𝑥𝑦𝛾𝑥𝑦

∗ ) 

(7) 

Earlier developments of the VFM relied on the assumption that the stiffness distribution, i.e. 

𝑄𝑥𝑥 in Eq. (6), is uniform over the domain, allowing it to be taken out of the left-hand-side 

integral of this equation as a scalar constant. The integrand then only includes the measured 

and virtual deformation fields, which leads to a direct calculation of the stiffness [20], 

provided that the traction components in the right-hand-side integral are specified. The 

simplification of 𝑄𝑥𝑥 as a scalar constant is only acceptable in macro-scale observations 

where materials are considered homogeneous. At meso- and micro-scales however, materials 

are no longer homogeneous. A parameterisation of the stiffness may therefore be necessary. 

The first attempts to parameterise the stiffness as a collection of polynomials have been 

described in [21] in which unknown coefficients of the polynomials were gathered in an 

unknown vector, then isolated from the integral and computed by a single matrix inversion 

operation. Recently, a discrete (piece-wise) parameterisation algorithm of the VFM has been 

proposed and successfully applied in 2-D [22], 3-D [16] and to welds [23-25]. 2-D 

parameterisation of the F-VFM was presented in detail in [18] and is extended here to 3-D.  
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In the simplest form where ν is approximated as a known position-independent constant1, Qxx 

may be written as follows: 

𝑄𝑥𝑥(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑎𝑚,𝑛,𝑜 cos 2𝜋 (
𝑚𝑥

𝐿𝑥
+
𝑛𝑦

𝐿𝑦
+
𝑜𝑧

𝐿𝑧
)

𝑂

𝑜=−𝑂

𝑁

𝑛=−𝑁

𝑀

𝑚=0

+ ∑ ∑ ∑ 𝑏𝑚,𝑛,𝑜 sin 2𝜋 (
𝑚𝑥

𝐿𝑥
+
𝑛𝑦

𝐿𝑦
+
𝑜𝑧

𝐿𝑧
)

𝑂

𝑜=−𝑂∗

𝑁

𝑛=−𝑁∗

𝑀

𝑚=0∗

 

(8) 

where 𝑎𝑚,𝑛,𝑜, 𝑏𝑚,𝑛,𝑜 are the Fourier coefficients of the series with non-dimensional spatial 

frequency components (m, n, o), and M, N, O are the maximum values of the indices m, n and 

o, respectively. The presence of negative frequency coefficients (n and o) in Eq. (8) needs a 

brief explanation. In a standard 3-D discrete Fourier transform, the lower limit for m, n and o 

would be 0. Negative frequencies in that case are implicitly present as aliased high 

frequencies generated by m, n and o values lying above the Nyquist limit. In the current case, 

however, the upper limit of m, n and o in practice will lie well below the Nyquist frequency 

for typical strain field resolutions. For example, for a 100×100×100 pixel strain field, we 

would require M, N and O to equal 100 before all the negative frequencies could be generated 

in this way. The number of degrees of freedom would then become impractically large and in 

practice, as will be seen in Section 3, we typically choose values of M, N and O less than 20. 

As a result, it is necessary to explicitly include the negative frequencies in the summation of 

Eq. (8). However, due to the even/ odd symmetry of the cosine/ sine functions, only two of 

the three indices m, n and o need to take negative values. In this case we have chosen index m 

to take the values from 0 to M whilst index n runs from –N to N and o from –O to O. This 

would reduce the number of required coefficients of the Fourier series by a factor of 2 

compared to the situation where all indices were allowed to take negative values. Condition 

(*) for the indices of the sine part of Eq. (8) prevents the three indices from being zero at the 

same time, which otherwise would later lead to a zero row of the left-hand-side matrix.  

                                                 
1 The assumption that ν is a known constant is reasonable in many cases, but where it is not, a second Fourier 

series expansion of the variable νQxx can be performed. This leads to a second set of Fourier coefficients that 

need to be solved for as part of the analysis. 
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Eq. (8) can also be represented in matrix form with the use of shorthand notations for cosine 

and sine functions with spatial frequency components (m, n, o) as 𝑐𝑚,𝑛,𝑜 = 𝑐𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧) =

cos 2𝜋 (
𝑚𝑥

𝐿𝑥
+
𝑛𝑦

𝐿𝑦
+
𝑜𝑧

𝐿𝑧
) and 𝑠𝑚,𝑛,𝑜 = 𝑠𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧) = sin 2𝜋 (

𝑚𝑥

𝐿𝑥
+
𝑛𝑦

𝐿𝑦
+
𝑜𝑧

𝐿𝑧
) so that 

𝑄𝑥𝑥(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑎𝑚,𝑛,𝑜𝑐𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧)

𝑂

𝑜=−𝑂

𝑁

𝑛=−𝑁

𝑀

𝑚=0

+ ∑ ∑ ∑ 𝑏𝑚,𝑛,𝑜𝑠𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧)

𝑂

𝑜=−𝑂∗

𝑁

𝑛=−𝑁∗

𝑀

𝑚=0∗

 

(9) 

or 

𝑄𝑥𝑥(𝑥, 𝑦, 𝑧) = (1 … 𝑐𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧)… …𝑠𝑚,𝑛,𝑜(𝑥, 𝑦, 𝑧) …)

(

 
 
 

𝑎0,0,0
⋮
𝑎𝑚,𝑛,𝑜
⋮
𝑏𝑚,𝑛,𝑜
⋮ )

 
 
 

 (10) 

The substitution of Eq. (10) into Eq. (6) leads to an equation of the F-VFM associated with a 

single choice of the virtual fields as follows: 

(∫𝑃𝑑𝑉

𝑉

…∫𝑃𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑉

…)

(

 
 
 

𝑎0,0,0
⋮
𝑎𝑚,𝑛,𝑜
⋮
𝑏𝑚,𝑛,𝑜
⋮ )

 
 
 

 

= ∫(𝑇𝑥𝑢𝑥
∗ + 𝑇𝑦𝑢𝑦

∗ + 𝑇𝑧𝑢𝑧
∗)𝑑𝑆𝑓

𝑆𝑓

 

(11) 

A particular choice of virtual field results in one equation of the form of Eq. (11). This one 

equation by itself is sufficient to obtain only the simplest solution of a single Fourier 

coefficient, the dc term 𝑎0,0,0, corresponding to the case m = n = o = 0. However, additional 

equations are necessary to obtain the full set of Fourier coefficients by selecting different 

virtual fields, thus giving rise to different forms for the function P(x, y, z). In what follows, 

𝑃(𝑖)(𝑥, 𝑦, 𝑧) will be used to denote this function for the i-th virtual field, and so for the virtual 

displacements 𝑢𝛼
∗ (𝑖)(𝛼 = 𝑥, 𝑦, 𝑧). If we denote by NF the total number of virtual fields 

sufficient to represent the unknown stiffness distribution, NF independent equations of the 
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form of Eq. (11) are required. These equations can then be assembled to give the matrix 

equation: 

𝐌𝐗 = 𝐘 (12) 

in which 

𝐌 =

(

 
 
 
∫𝑃(1)𝑑𝑉

𝑉

…∫𝑃(1)𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃(1)𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑉

…

⋮ ⋮ ⋮

∫𝑃(𝑁𝐹)𝑑𝑉

𝑉

…∫𝑃(𝑁𝐹)𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃(𝑁𝐹)𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑉

…
)

 
 
 

 (13) 

𝐗 =

(

 
 
 

𝑎0,0,0
⋮
𝑎𝑚,𝑛,𝑜
⋮
𝑏𝑚,𝑛,𝑜
⋮ )

 
 
 

 (14) 

𝐘 =

(

 
 
 
 
∫(𝑇𝑥𝑢𝑥

∗ (1) + 𝑇𝑦𝑢𝑦
∗ (1) + 𝑇𝑧𝑢𝑧

∗(1))𝑑𝑆𝑓
𝑆𝑓

⋮

∫(𝑇𝑥𝑢𝑥
∗ (𝑁𝐹) + 𝑇𝑦𝑢𝑦

∗ (𝑁𝐹) + 𝑇𝑧𝑢𝑧
∗(𝑁𝐹))𝑑𝑆𝑓

𝑆𝑓 )

 
 
 
 

 (15) 

Eq. (12) is called the resolution matrix equation of the 3-D F-VFM as it will be inverted to 

solve for the vector X containing the desired Fourier coefficients am,n,o and bm,n,o that describe 

the unknown stiffness distribution. The column vector Y contains distributions of traction 

components, with the number of its elements equal to NF computed by 

𝑁𝐹 = 2(𝑀 + 1)(2𝑁 + 1)(2𝑂 + 1) − 1 (16) 

 

2.1.2. Selection of virtual displacement and strain fields 

To find the coefficients of the stiffness Fourier series in Eq. (10), different virtual 

displacement fields and their derivatives are necessary to build up the left-hand-side matrix 

M defined in Eq. (13). The choice of these virtual fields is the key issue in any VFM 

application as it will directly affect the degree of independence of the matrix equation (12). 
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The VFM in its infancy witnessed the selection of potential virtual fields on a trial-and-error 

basis to ensure that the equations of the linear system (12) are independent. Later, the 

stability of the linear system was improved by means of a special virtual fields selection 

strategy [20]. Recent development of the VFM included an optimal selection of the virtual 

fields [15] which at the same time preserves the stability of the system of equations (12) and 

reduces the sensitivity of the method to noise. The virtual displacements and strains in those 

studies are defined as continuous functions either over the whole domain or piecewise within 

its subdomains. In the F-VFM, however, the virtual fields are chosen as an arrangement of 

simple cosine and sine functions of different frequencies. As Eq. (6) involves volume 

integrals of terms of the form 𝜖𝛼𝛼
∗ 𝜖𝛽𝛽𝑄𝑥𝑥 (,  = x, y, z), the use of different spatial 

frequencies in the virtual fields therefore allows a given spatial frequency in the measured 

strain field 𝜖𝛽𝛽 to be linked in turn with different coefficients in the Fourier expansion of 

𝑄𝑥𝑥.  

A few simple rules have been used to select the virtual fields as follows: 

a) The set of virtual field spatial frequencies should be the same as that for the stiffness 

parameterisation so that a given spatial frequency in the measured strain field 𝜖𝛽𝛽 can be 

linked in turn with all the coefficients in the Fourier expansion of 𝑄𝑥𝑥; 

b) Each spatial frequency for a given virtual strain field component should have both a sine 

and cosine wave of unit amplitude to ensure that the signal in 𝜖𝛽𝛽 at that spatial frequency 

is detected regardless of its phase; 

c) The total number of virtual fields should be equal to 𝑁𝐹 in order to uniquely determine 

the unknown Fourier series coefficients in Eq. (12). Although the number of virtual fields 

can in principle be larger than NF, the calculated Fourier series coefficients then represent 

a least squares solution of the matrix Eq. (12). If the number of virtual fields is less than 

NF, no solution exists. 

Specifically, the selection of the virtual fields was achieved by defining a set of virtual 

displacements 𝑢𝑥
∗ , 𝑢𝑦
∗  and 𝑢𝑧

∗ which then produce the six virtual strain fields simultaneously 

through differentiation. Thus, the virtual strain fields 𝜖𝑥𝑥
∗ , 𝜖𝑦𝑦

∗ , 𝜖𝑧𝑧
∗ , 𝛾𝑦𝑧

∗ , 𝛾𝑧𝑥
∗  and 𝛾𝑥𝑦

∗  consist of 

a set of cosine waves with spatial frequency components p = 0..M; q = –N..N, r = –O..O, 

giving (M+1)(2N+1)(2O+1) independent virtual fields; and a set of corresponding sine waves 

in which the trivial case p = q = r = 0 is excluded, giving an additional (M+1)(2N+1)(2O+1) – 
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1 fields. The total number of chosen cosine and sine virtual fields will therefore be equal to 

NF, which is the required number to determine uniquely the unknown Fourier series 

coefficients of Eq. (10). An additional benefit resulting from this choice of virtual fields is 

that it allows a fast algorithm to be employed, based on 3-D fast Fourier transforms, as will 

be discussed in the next section. 

The virtual displacements and their derivatives used in the 3-D F-VFM, including the special 

cases p = 0; q = 0 and r = 0, are summarized in Table 1. The virtual strains are then computed 

from these derivatives by 

𝜖𝑥𝑥
∗ =
𝜕𝑢𝑥
∗

𝜕𝑥
 ; 𝜖𝑦𝑦

∗ =
𝜕𝑢𝑦
∗

𝜕𝑦
 ; 𝜖𝑧𝑧

∗ =
𝜕𝑢𝑧
∗

𝜕𝑧
  ; 

(17) 

𝛾𝑦𝑧
∗ =
𝜕𝑢𝑦
∗

𝜕𝑧
+
𝜕𝑢𝑧
∗

𝜕𝑦
  ; 𝛾𝑧𝑥

∗ =
𝜕𝑢𝑧
∗

𝜕𝑥
+
𝜕𝑢𝑥
∗

𝜕𝑧
  ; 𝛾𝑥𝑦

∗ =
𝜕𝑢𝑥
∗

𝜕𝑦
+
𝜕𝑢𝑦
∗

𝜕𝑥
 

It is convenient to write matrix M of size NF×NF from Eq. (13) in terms of the sub-matrices 

A, B, C and D as follows: 

𝐌 = (
𝐀 𝐁
𝐂 𝐃
) (18) 

where A is of size (M+1)(2N+1)(2O+1) rows × (M+1)(2N+1)(2O+1) columns, B is 

(M+1)(2N+1)(2O+1) × ((M+1)(2N+1)(2O+1) –1), C is ((M+1)(2N+1)(2O+1) –1) × 

(M+1)(2N+1)(2O+1), and D is ((M+1)(2N+1)(2O+1) –1) × ((M+1)(2N+1)(2O+1) –1). A and 

C contain the cosine terms 𝑐𝑚,𝑛,𝑜 in the stiffness expansion with B and D containing the sine 

terms 𝑠𝑚,𝑛,𝑜. A and B contain the corresponding cosine waves in 𝜖𝛼𝛼
∗  (denoted 𝑐𝑝,𝑞,𝑟) with C 

and D containing the sine terms 𝑠𝑝,𝑞,𝑟. 

With the choice of virtual fields mentioned earlier, it is now possible to write the elements of 

matrix M in their explicit forms by combining Eq. (7), (17), Table 1 with Eq. (13). These 

representations will be useful when the fast algorithm of the F-VFM is introduced in the 

following section. The contribution of the experimental normal strains to the general element 

of matrix M can be expanded as 
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∫((𝜖𝑥𝑥 +
𝜈

1 − 𝜈
(𝜖𝑦𝑦 + 𝜖𝑧𝑧)) 𝜖𝑥𝑥

∗ + (𝜖𝑦𝑦 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑧𝑧)) 𝜖𝑦𝑦

∗

𝑉

+ (𝜖𝑧𝑧 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑦𝑦)) 𝜖𝑧𝑧

∗ ) {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉 

=
1 + 𝜈

1 − 𝜈
∫(𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧) {

𝑐𝑝,𝑞,𝑟
𝑠𝑝,𝑞,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 

(19) 

The { 
.
. } × { 

.

. } notation indicates a product of a cosine/sine virtual strain field component 

with a cosine/sine term from the stiffness expansion, the particular combination being 

dependent on the quadrant (A, B, C or D) of the matrix M, as defined in Eq. (18). Note that 

m, n, o are indices of the cosine/ sine terms from the stiffness expansion whilst p, q, r are 

those of the cosine/sine virtual strain fields. The shear strains involved in the formation of 

matrix M can be expressed in a similar way as follows: 

1 − 2𝜈

2(1 − 𝜈)
∫𝛾𝑦𝑧𝛾𝑦𝑧

∗ {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 

 =

{
 
 
 

 
 
 
1 − 2𝜈

2(1 − 𝜈)
∫𝛾𝑦𝑧 (

𝐿𝑦

𝐿𝑧

𝑟

𝑞
+
𝐿𝑧
𝐿𝑦

𝑞

𝑟
) {
𝑐𝑝,𝑞,𝑟
𝑠𝑝,𝑞,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑞 ≠ 0, 𝑟 ≠ 0)

1 − 2𝜈

2(1 − 𝜈)
∫𝑦𝛾𝑦𝑧 (

2𝜋𝑟

𝐿𝑧
) {
−𝑠𝑝,0,𝑟
𝑐𝑝,0,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑞 = 0)

1 − 2𝜈

2(1 − 𝜈)
∫ 𝑧𝛾𝑦𝑧 (

2𝜋𝑞

𝐿𝑦
) {
−𝑠𝑝,𝑞,0
𝑐𝑝,𝑞,0
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑟 = 0)

 

(20) 

1 − 2𝜈

2(1 − 𝜈)
∫𝛾𝑧𝑥𝛾𝑧𝑥

∗ {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 

 =

{
 
 
 

 
 
 
1 − 2𝜈

2(1 − 𝜈)
∫𝛾𝑧𝑥 (

𝐿𝑥
𝐿𝑧

𝑟

𝑝
+
𝐿𝑧
𝐿𝑥

𝑝

𝑟
) {
𝑐𝑝,𝑞,𝑟
𝑠𝑝,𝑞,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑝 ≠ 0, 𝑟 ≠ 0)

1 − 2𝜈

2(1 − 𝜈)
∫𝑥𝛾𝑧𝑥 (

2𝜋𝑟

𝐿𝑧
) {
−𝑠0,𝑞,𝑟
𝑐0,𝑞,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑝 = 0)

1 − 2𝜈

2(1 − 𝜈)
∫ 𝑧𝛾𝑧𝑥 (

2𝜋𝑝

𝐿𝑥
) {
−𝑠𝑝,𝑞,0
𝑐𝑝,𝑞,0
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑟 = 0)
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1 − 2𝜈

2(1 − 𝜈)
∫𝛾𝑥𝑦𝛾𝑥𝑦

∗ {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 

 =

{
 
 
 

 
 
 
1 − 2𝜈

2(1 − 𝜈)
∫𝛾𝑥𝑦 (

𝐿𝑥
𝐿𝑦

𝑞

𝑝
+
𝐿𝑦

𝐿𝑥

𝑝

𝑞
) {
𝑐𝑝,𝑞,𝑟
𝑠𝑝,𝑞,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑝 ≠ 0, 𝑞 ≠ 0)

1 − 2𝜈

2(1 − 𝜈)
∫𝑥𝛾𝑥𝑦 (

2𝜋𝑞

𝐿𝑦
) {
−𝑠0,𝑞,𝑟
𝑐0,𝑞,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑝 = 0)

1 − 2𝜈

2(1 − 𝜈)
∫𝑦𝛾𝑥𝑦 (

2𝜋𝑝

𝐿𝑥
) {
−𝑠𝑝,0,𝑟
𝑐𝑝,0,𝑟
} × {
𝑐𝑚,𝑛,𝑜
𝑠𝑚,𝑛,𝑜
} 𝑑𝑉

𝑉

 (𝑞 = 0)

 

(22) 

 

2.1.3. Fast F-VFM implementation 

An efficient algorithm for the F-VFM using 3-D fast Fourier transforms (FFT) is presented in 

this section. Following the section above, the cross product { 
.
. } × { 

.

. } term from Eq. (19) to 

(22) can be rewritten in the following forms: 

𝑐𝑚,𝑛,𝑜𝑐𝑝,𝑞,𝑟 =
1

2
(𝑐𝑚+𝑝,𝑛+𝑞,𝑜+𝑟 + 𝑐𝑚−𝑝,𝑛−𝑞,𝑜−𝑟)  

𝑐𝑚,𝑛,𝑜𝑠𝑝,𝑞,𝑟 =
1

2
(𝑠𝑚+𝑝,𝑛+𝑞,𝑜+𝑟 − 𝑠𝑚−𝑝,𝑛−𝑞,𝑜−𝑟)  

𝑠𝑚,𝑛,𝑜𝑐𝑝,𝑞,𝑟 =
1

2
(𝑠𝑚+𝑝,𝑛+𝑞,𝑜+𝑟 + 𝑠𝑚−𝑝,𝑛−𝑞,𝑜−𝑟)  

𝑠𝑚,𝑛,𝑜𝑠𝑝,𝑞,𝑟 =
1

2
(−𝑐𝑚+𝑝,𝑛+𝑞,𝑜+𝑟 + 𝑐𝑚−𝑝,𝑛−𝑞,𝑜−𝑟)  

(23) 

The right-hand sides of Eq. (19) to (22) all reduce to scaled versions of ℜ[𝐻(𝑗, 𝑘, 𝑙)] and 

ℑ[𝐻(𝑗, 𝑘, 𝑙)], respectively, where ℜ and ℑ denote real and imaginary parts of a complex 

variable, and H is given by 

𝐻(𝑗, 𝑘, 𝑙) = ∫ℎ(𝑥, 𝑦, 𝑧)(𝑐𝑗,𝑘,𝑙 − 𝑖𝑠𝑗,𝑘,𝑙)𝑑𝑉

𝑉

 (24) 

in which j, k and l are spatial frequency components, i is the square root of -1, and h is a 

function derived from the experimental strain fields. In discrete form, Eq. (24) can be written 

𝐻(𝑗, 𝑘, 𝑙) ≈
𝐿𝑥𝐿𝑦𝐿𝑧

𝑁𝑥𝑁𝑦𝑁𝑧
∑ ∑ ∑ ℎ̅(𝑥̅, 𝑦̅, 𝑧̅)(𝑐𝑗̅,𝑘,𝑙 − 𝑖𝑠̅𝑗,𝑘,𝑙)

𝑁𝑧−1

𝑧̅=0

𝑁𝑦−1

𝑦̅=0

𝑁𝑥−1

𝑥̅=0

 (25) 
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where 𝑥̅, 𝑦̅ and 𝑧̅ are non-dimensional spatial coordinates (𝑥̅ = 0,1,2, … ,𝑁𝑥 − 1; 𝑦̅ =

0,1,2, … ,𝑁𝑦 − 1; 𝑧̅ = 0,1,2, … ,𝑁𝑧 − 1), ℎ̅ is ℎ expressed in terms of these coordinates, and 

𝑐𝑗̅,𝑘,𝑙(𝑥̅, 𝑦̅, 𝑧̅) = cos 2𝜋 (
𝑗𝑥̅

𝑁𝑥
+
𝑘𝑦̅

𝑁𝑦
+
𝑙𝑧̅

𝑁𝑧
) 

𝑠̅𝑗,𝑘,𝑙(𝑥̅, 𝑦̅, 𝑧̅) = sin 2𝜋 (
𝑗𝑥̅

𝑁𝑥
+
𝑘𝑦̅

𝑁𝑦
+
𝑙𝑧̅

𝑁𝑧
) 

(26) 

Eq. (25) is just the 3-D discrete Fourier transform of the sampled signal ℎ̅(𝑥̅, 𝑦̅, 𝑧̅) and can be 

calculated rapidly by a fast Fourier transform (FFT) algorithm, implemented for example as 

fftn in the MATLAB language. Spatial frequency components (j, k, l) have the same 

meaning in Eq. (25) and (26) as for the corresponding continuous form expressions 𝑐𝑗,𝑘,𝑙 and 

𝑠𝑗,𝑘,𝑙, with units of ‘cycles per field of view’. One assumption implicit in the use of the 3-D 

FFT is that the origin of the domain is at the bottom left of the field of view. The shift of the 

origin to the centroid of the volume of interest, as for the application considered in the next 

section, can be achieved by swapping the quadrants of the experimental strain fields along 

each direction, for example with the MATLAB fftshift function.  

A total of 10 FFTs of the function h in the right-hand sides of Eq. (19) to (22) are required to 

build up matrix M, which are shown as follows: 

ℎ1(𝑥, 𝑦, 𝑧) = 𝜖𝑥𝑥(𝑥, 𝑦, 𝑧) + 𝜖𝑦𝑦(𝑥, 𝑦, 𝑧) + 𝜖𝑧𝑧(𝑥, 𝑦, 𝑧) 

ℎ2(𝑥, 𝑦, 𝑧) = 𝛾𝑦𝑧(𝑥, 𝑦, 𝑧) 

ℎ3(𝑥, 𝑦, 𝑧) = 𝑦𝛾𝑦𝑧(𝑥, 𝑦, 𝑧) 

ℎ4(𝑥, 𝑦, 𝑧) = 𝑧𝛾𝑦𝑧(𝑥, 𝑦, 𝑧) 

ℎ5(𝑥, 𝑦, 𝑧) = 𝛾𝑧𝑥(𝑥, 𝑦, 𝑧) 

ℎ6(𝑥, 𝑦, 𝑧) = 𝑧𝛾𝑧𝑥(𝑥, 𝑦, 𝑧) 

ℎ7(𝑥, 𝑦, 𝑧) = 𝑥𝛾𝑧𝑥(𝑥, 𝑦, 𝑧) 

ℎ8(𝑥, 𝑦, 𝑧) = 𝛾𝑥𝑦(𝑥, 𝑦, 𝑧) 

ℎ9(𝑥, 𝑦, 𝑧) = 𝑥𝛾𝑥𝑦(𝑥, 𝑦, 𝑧) 

ℎ10(𝑥, 𝑦, 𝑧) = 𝑦𝛾𝑥𝑦(𝑥, 𝑦, 𝑧) 
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The computational effort for each 3-D FFT is of order NxNyNz(log2(Nx) + log2(Ny) + log2(Nz)) 

operations, whereas that for assembling the elements of M from the resulting coefficients is 

of order NF
2 ~ 64M2N2O2 operations. The latter dominates over the former for problems 

involving relatively large numbers of Fourier coefficients in the reconstruction. In such cases, 

the computational effort becomes essentially independent of the resolution of the 

experimental strain fields, with a theoretical reduction in computational effort by a factor of 

NxNyNz by using the fast algorithm over the direct (i.e., element by element) method of 

assembling the matrix M.  

The computation time for the other steps in the algorithm, i.e. evaluation of the terms in the 

vector Y; finding the solution of Eq. (12) by Gauss elimination; and reconstruction of the 

elastic stiffness distribution from the solution vector, is normally short compared to that for 

calculation of M. For example, the reconstruction of stiffness distribution from its Fourier 

coefficients can be handled very efficiently by performing a single 3-D inverse Fourier 

transform on a 3-D block of complex numbers, where the calculated 𝑎𝑚,𝑛,𝑜 and 𝑏𝑚,𝑛,𝑜 

coefficients are the real and imaginary parts, respectively. 

In the ‘egg-box’ stiffness distribution problem considered in Section 3.1 for example, the 

total time to set up matrix M involving nearly ten thousand degrees of freedom and a million 

elements of input strains using the fast algorithm on an Intel® Core™ i7 CPU 2.79 GHz 

computer with 8GB of memory was ~18s, compared to ~1.2×106s for the direct 

implementation of the same matrix. The time taken to invert Eqn. (12) was 167s. A time 

saving of 4-5 orders of magnitude is therefore clearly achievable in practice. 

 

2.2. Adaptation of the 3-D F-VFM to unknown boundary conditions 

As presented in Eq. (12) to (15) with the Fourier series parameterisation of the stiffness 

distribution in Eq. (8), the computation of the unknown coefficient vector X from the matrix 

Eq. (12) is in principle straightforward if the traction vector T = (Tx, Ty, Tz) necessary to 

establish the column vector Y is given. In reality however, these tractions might not be well 

specified, or even available at all. This section considers the case where knowledge of the 

traction vector T is not available over the boundary. It therefore requires a slight adaptation 

of the general F-VFM presented above. The adaptation can be done in (at least) three 

different ways, which we call the ‘experimental traction’, the ‘windowed traction’ and the 

‘Fourier-series traction’ approaches. The former relies on the experimental strain field along 
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the boundary, which is converted to traction distributions via the recovered stiffness 

distribution. The second applies a window function to the virtual displacement fields so that 

the virtual work done by the tractions is identically equal to zero, regardless of the tractions. 

The third involves performing a Fourier series expansion of the traction distribution over the 

boundary, the coefficients for which are solved for at the same time as the unknown Fourier 

coefficients of the stiffness expansion. A comparison of the approaches can be found in [26]. 

The ‘experimental traction’ approach was found to be less robust in the presence of noise 

than the other two. In view of the relative simplicity of the ‘windowed traction’ approach 

over the ‘Fourier-series traction’ approach, the former was used to obtain all the results in this 

paper. 

In the ‘windowed traction’ approach, continuity of the window function and its first 

derivative is required in order to ensure that the windowed virtual strains are well defined 

over the whole domain. A rectangular window function, for example, does not satisfy this 

requirement.  

To simplify the mathematical derivation of the approach, we focus on a regular geometry 

such as the cuboid in Fig. 1. The virtual works of the tractions can then be broken down into 

six groups corresponding to the six faces of the cuboid: 

∫(𝑇𝑥𝑢𝑥
∗ + 𝑇𝑦𝑢𝑦

∗ + 𝑇𝑧𝑢𝑧
∗)𝑑𝑆𝑓

𝑆𝑓

=∑ ∫(𝑇𝑥
[𝑖]𝑢𝑥
∗ + 𝑇𝑦

[𝑖]𝑢𝑦
∗ + 𝑇𝑧

[𝑖]𝑢𝑧
∗)𝑑𝑆𝑓

[𝑖]

𝑆𝑓
[𝑖]

6

𝑖=1

 (28) 

where 𝑑𝑆𝑓
[𝑖]

 represents a surface element on face i and 𝑇𝑥
[𝑖]

, 𝑇𝑦
[𝑖]

,  𝑇𝑧
[𝑖]

  are the x, y and z 

components of the traction on the same face. 

If we denote Wx = Wx(x), Wy = Wy(y) and Wz = Wz(z) the functions chosen so as to zero the 

virtual displacements on faces 1 and 4, faces 2 and 5, and faces 3 and 6 respectively (refer to 

Fig. 1), W(x, y, z) = Wx(x)Wy(y)Wz(z) is a potential combined window function that zeros the 

virtual works of the tractions over the boundary. The windowed virtual displacement fields 

𝑢̂𝑥
∗ , 𝑢̂𝑦
∗  and 𝑢̂𝑧

∗ are defined by multiplying the reference virtual displacements 𝑢𝑥
∗ , 𝑢𝑦
∗  and 𝑢𝑧

∗ 

by W(x, y, z) so that 𝑢̂𝑥
∗ = 𝑊(𝑥, 𝑦, 𝑧)𝑢𝑥

∗ , 𝑢̂𝑦
∗ = 𝑊(𝑥, 𝑦, 𝑧)𝑢𝑦

∗  and 𝑢̂𝑧
∗ = 𝑊(𝑥, 𝑦, 𝑧)𝑢𝑧

∗ are zero 

on the boundary. In what follows, the ‘^’ symbol above a given variable indicates that it is 

windowed. Vector Y after applying this window function hence becomes zero as: 
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𝐘̂ =

(

 
 
 
 
 
∑ ∫(𝑇𝑥

[𝑖]𝑢̂𝑥
∗ (1) + 𝑇𝑦

[𝑖]𝑢̂𝑦
∗ (1) + 𝑇𝑧

[𝑖]𝑢̂𝑧
∗(1)) 𝑑𝑆𝑓

[𝑖]

𝑆
𝑓
[𝑖]

6

𝑖=1

⋮

∑ ∫(𝑇𝑥
[𝑖]𝑢̂𝑥
∗ (𝑁𝐹) + 𝑇𝑦

[𝑖]𝑢̂𝑦
∗ (𝑁𝐹) + 𝑇𝑧

[𝑖]𝑢̂𝑧
∗(𝑁𝐹))𝑑𝑆𝑓

[𝑖]

𝑆𝑓
[𝑖]

6

𝑖=1
)

 
 
 
 
 

= 𝟎 (29) 

The windowed matrix equation (12) with its right-hand-side vector 𝐘̂ being zero is thus of 

homogeneous form 

𝐌̂𝐗 = 𝟎 (30) 

with 

𝐌̂ =

(

 
 
 
∫ 𝑃̂(1)𝑑𝑉

𝑉

…∫𝑃̂(1)𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃̂(1)𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑉

…

⋮ ⋮ ⋮

∫ 𝑃̂(𝑁𝐹)𝑑𝑉

𝑉

…∫𝑃̂(𝑁𝐹)𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃̂(𝑁𝐹)𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑉

…
)

 
 
 

 (31) 

𝑃̂ = 𝑃̂(𝑥, 𝑦, 𝑧) = (𝜖𝑥𝑥 +
𝜈

1 − 𝜈
(𝜖𝑦𝑦 + 𝜖𝑧𝑧)) 𝜖𝑥̂𝑥

∗ + (𝜖𝑦𝑦 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑧𝑧)) 𝜖𝑦̂𝑦

∗  

+(𝜖𝑧𝑧 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑦𝑦)) 𝜖𝑧̂𝑧

∗ +
1 − 2𝜈

2(1 − 𝜈)
(𝛾𝑦𝑧𝛾̂𝑦𝑧

∗ + 𝛾𝑧𝑥𝛾𝑧𝑥
∗ + 𝛾𝑥𝑦𝛾𝑥𝑦

∗ ) 

(32) 

and X the column vector of unknown Fourier stiffness coefficients defined in Eq. (14). The 

windowed virtual strain fields are obtained by differentiating the corresponding windowed 

virtual displacements 𝑢̂𝑥
∗ , 𝑢̂𝑦
∗  and 𝑢̂𝑧

∗ as follows: 

𝜖𝑥̂𝑥
∗ =
𝜕𝑢̂𝑥
∗

𝜕𝑥
=
𝜕(𝑊𝑢𝑥

∗)

𝜕𝑥
= 𝑊𝑥,𝑥𝑊𝑦𝑊𝑧𝑢𝑥

∗ +𝑊
𝜕𝑢𝑥
∗

𝜕𝑥
 

𝜖𝑦̂𝑦
∗ =
𝜕𝑢̂𝑦
∗

𝜕𝑦
=
𝜕(𝑊𝑢𝑦

∗ )

𝜕𝑦
= 𝑊𝑦,𝑦𝑊𝑥𝑊𝑧𝑢𝑦

∗ +𝑊
𝜕𝑢𝑦
∗

𝜕𝑦
 

𝜖𝑧̂𝑧
∗ =
𝜕𝑢̂𝑧
∗

𝜕𝑧
=
𝜕(𝑊𝑢𝑧

∗)

𝜕𝑧
= 𝑊𝑧,𝑧𝑊𝑥𝑊𝑦𝑢𝑧

∗ +𝑊
𝜕𝑢𝑧
∗

𝜕𝑧
 

(33) 
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𝛾𝑦𝑧
∗ =
𝜕𝑢̂𝑦
∗

𝜕𝑧
+
𝜕𝑢̂𝑧
∗

𝜕𝑦
=
𝜕(𝑊𝑢𝑦

∗ )

𝜕𝑧
+
𝜕(𝑊𝑢𝑧

∗)

𝜕𝑦

= 𝑊𝑧,𝑧𝑊𝑥𝑊𝑦𝑢𝑦
∗ +𝑊

𝜕𝑢𝑦
∗

𝜕𝑧
+𝑊𝑦,𝑦𝑊𝑥𝑊𝑧𝑢𝑧

∗ +𝑊
𝜕𝑢𝑧
∗

𝜕𝑦
 

𝛾𝑧𝑥
∗ =
𝜕𝑢̂𝑧
∗

𝜕𝑥
+
𝜕𝑢̂𝑥
∗

𝜕𝑧
=
𝜕(𝑊𝑢𝑧

∗)

𝜕𝑥
+
𝜕(𝑊𝑢𝑥

∗)

𝜕𝑧

= 𝑊𝑥,𝑥𝑊𝑦𝑊𝑧𝑢𝑧
∗ +𝑊

𝜕𝑢𝑧
∗

𝜕𝑥
+𝑊𝑧,𝑧𝑊𝑥𝑊𝑦𝑢𝑥

∗ +𝑊
𝜕𝑢𝑥
∗

𝜕𝑧
 

𝛾𝑥𝑦
∗ =
𝜕𝑢̂𝑥
∗

𝜕𝑦
+
𝜕𝑢̂𝑦
∗

𝜕𝑥
=
𝜕(𝑊𝑢𝑥

∗)

𝜕𝑦
+
𝜕(𝑊𝑢𝑦

∗ )

𝜕𝑥

= 𝑊𝑦,𝑦𝑊𝑥𝑊𝑧𝑢𝑥
∗ +𝑊

𝜕𝑢𝑥
∗

𝜕𝑦
+𝑊𝑥,𝑥𝑊𝑦𝑊𝑧𝑢𝑦

∗ +𝑊
𝜕𝑢𝑦
∗

𝜕𝑥
 

The reference virtual displacements 𝑢𝑥
∗ , 𝑢𝑦
∗ , 𝑢𝑧
∗ and their associated derivatives are specified 

in Table 1. The homogeneous matrix equation (30) has the trivial solution X = 0, which is not 

useful here because we require a unique and non-zero stiffness distribution.  

A normalisation strategy (see, e.g. [27]-chapter 3) can however be used in which the entire 

Fourier series stiffness expansion is divided by its dc term 𝑎0,0,0, resulting in a unit dc term. 

With this approach, matrix 𝐌̂ of size NF×NF can be split into a column vector 𝐍̂̅ of size NF×1 

and a sub-matrix 𝐌̂̅ of size NF×(NF –1). The column vector 𝐍̂̅ is in fact the first column of 

matrix 𝐌̂ which contains data corresponding to the unit dc term, and sub-matrix 𝐌̂̅ contains 

the rest of the data. 𝐍̂̅ is then brought to the right side of Eq. (30) resulting in the non-

homogeneous and over-determined system of equations below: 

𝐌̂̅𝐗̅ = 𝐍̂̅ (34) 

This equation can be solved for its normalised coefficient vector 𝐗̅ in a least-squares sense 

using e.g. the Moore-Penrose inversion algorithm2. 

The formulae for 𝐌̂̅, 𝐍̂̅ and 𝐗̅ are 

                                                 
2 The Moore-Penrose inversion is implemented in MATLAB using command pinv. 
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𝐌̂̅ =

(

 
 
 
…∫𝑃̂(1)𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃̂(1)𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑆

…

⋮ ⋮

…∫ 𝑃̂(𝑁𝐹)𝑐𝑚,𝑛,𝑜𝑑𝑉

𝑉

… …∫𝑃̂(𝑁𝐹)𝑠𝑚,𝑛,𝑜𝑑𝑉

𝑉

…
)

 
 
 

 (35) 

𝐍̂̅ = −

(

 
 
 
∫𝑃̂(1)𝑑𝑉

𝑉

⋮

∫ 𝑃̂(𝑁𝐹)𝑑𝑉

𝑉 )

 
 
 

 (36) 

𝐗̅ =
1

𝑎0,0,0
(…𝑎𝑚,𝑛,𝑜… …𝑏𝑚,𝑛,𝑜…)′ (37) 

  

The stiffness distribution reconstructed from the Fourier coefficients in vector 𝐗̅ is thus a 

scaled version of the real distribution by a factor of the dc term 𝑎0,0,0 due to the normalisation 

needed to obtain a unique solution to the homogeneous equation. The stiffness identification 

by the F-VFM in the case of unknown boundary conditions can therefore only be achievable 

to within an unknown scale factor. 

 

2.3. Adaptation to incompressible materials 

Although the F-VFM mentioned earlier can theoretically be applied to nearly all types of 

isotropic elastic materials, the use of Eq. (5) might not provide accurate results if the material 

is nearly incompressible as some components of the stiffness matrix in Eq. (3) tend to infinity 

as  tends to 0.5. The equation therefore needs to be adapted to this particular type of 

material. 

According to [28] the constitutive relation of incompressible materials can be written in 

matrix form to reveal the contribution of the shear modulus term as: 

𝛔 = −𝐩 + 2𝐺𝛜 (38) 

in which 𝛔 = {𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜎𝑧𝑧, 𝜏𝑦𝑧 , 𝜏𝑧𝑥, 𝜏𝑥𝑦}
′
 and 𝛜 = {𝜖𝑥𝑥, 𝜖𝑦𝑦, 𝜖𝑧𝑧, 𝛾𝑦𝑧 , 𝛾𝑧𝑥 , 𝛾𝑥𝑦}

′
 are 

respectively column vectors containing components of the stress and strain tensors; 𝐩 =

ng
tru

on
gt

ho
@

ya
ho

o.
fr



 

21/42 

 

{𝑝, 𝑝, 𝑝, 0,0,0}′ is the vector of the hydrostatic pressure 𝑝; 𝐺 the shear modulus distribution of 

the material (which in some textbooks is denoted by 𝜇). The substitution of Eq. (38) into Eq. 

(1) yields the essential equation of the VFM written for incompressible materials: 

−∫𝐩𝛜∗d𝑉

𝑉

+ 2∫𝐺𝛜𝛜∗d𝑉

𝑉

= ∫𝐓 ∙ 𝐮∗d𝑆𝑓
𝑆𝑓

 (39) 

The contribution of the hydrostatic pressure 𝐩 in Eq. (39) is not easily measured and cannot 

be neglected in general. However, with a special choice of the virtual fields, and under the 

assumption that pressure gradients can be neglected, one can remove the involvement of the 

hydrostatic pressure term in the Eq. (39)3. This approximation, which was proposed in [16] 

when analysing the same dataset using the FE-based VFM, can be seen by considering the 

term which contains the hydrostatic pressure ∫ 𝐩𝛜∗𝑑𝑉
𝑉

. By integrating this term by parts one 

gets 

∫𝐩𝛜∗𝑑𝑉

𝑉

= ∫𝐩(∇𝐮∗)𝑑𝑉

𝑉

= 𝐩 ∫𝐮∗𝑑𝑆𝑓
𝑆𝑓

− ∫𝐮∗(∇𝐩)𝑑𝑉

𝑉

 (40) 

If the virtual displacement field u* is chosen to be zero over the boundary of the volume V 

(which is indeed possible and is presented later in this paper through the application of a 

potential window function to the virtual displacements), the integrals 𝐩∫ 𝐮∗𝑑𝑆𝑓𝑆𝑓
 and 

∫ 𝐮∗(∇𝐩)𝑑𝑉
𝑉

 involving gradient of the hydrostatic pressure term will become zeros, allowing 

the integral ∫ 𝐩𝛜∗𝑑𝑉
𝑉

 to be neglected. As a result Eq. (39) can be reformulated in a more 

simple form as follows: 

∫2𝐺𝛜𝛜∗d𝑉

𝑉

= ∫𝐓 ∙ 𝐮∗d𝑆𝑓
𝑆𝑓

 (41) 

which only has G as the unknown variable. The shear modulus distribution G relates to the 

elastic parameters E and ν of an incompressible material by 

𝐺 =
𝐸

2(1 + 𝜈)
=
𝐸

3
 (42) 

                                                 
3 The gradient of pressure p is null if p is assumed to be uniform. In the case where p is not uniform, zeroing u* 

at the boundary will not cancel the contribution of p to the virtual work, which otherwise requires the choice of 

u* satisfying div(u*) = 0 throughout the volume to fully cancel p. One example of virtual fields that satisfy 

div(u*) = 0 is given in [29]; unfortunately, however, the cosine/sine functions used in the F-VFM method do not 

satisfy this constraint.   
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 Eq. (41) now looks identical to Eq. (2) except for the notation of G being used instead of Q. 

The F-VFM re-derived for incompressible materials can therefore be replicated from that 

derived in the general case, as in the previous section, starting with the unknown shear 

modulus G being parameterised by a Fourier series. 

 

3. Examples with numerical and experimental data 

In this section we show proof-of-principle results of the 3-D F-VFM presented above. 

Numerical input strain data were achieved from a forward analysis using a commercial finite 

element package. Sensitivity analyses demonstrate the impact of noise on the performance of 

the F-VFM using numerical input. Application to real experimental data shows a successful 

implementation of the technique derived for incompressible materials, in the case of 

unknown boundary conditions. 

 

3.1. Example with numerical data and known boundary conditions 

A cube of size Lx×Ly×Lz = 10×10×10 mm3 was subject to uniform tri-axial traction 

distributions of magnitude σ0 = 1 MPa perpendicular to all six faces of the cube and pointing 

outwards. The linearity of the model and F-VFM equations means that equivalent results 

would also have been obtained with uniform compression rather than tension. The cube was 

defined to consist of a linear elastic isotropic material of Poisson’s ratio ν = 0.3 and with an 

elastic modulus distribution of an ‘egg-box’ pattern defined by 

𝐸ref = 20 + cos 2𝜋 (
2𝑥

𝐿𝑥
+
𝑦

𝐿𝑦
+
2𝑧

𝐿𝑧
) + sin 2𝜋 (

𝑥

𝐿𝑥
+
2𝑦

𝐿𝑦
+
2𝑧

𝐿𝑧
) (43) 

where the units of 𝐸ref are MPa. The origin of the coordinate system is located at the centroid 

of the cube. The corresponding 3-D stiffness distribution follows from Eq. (4) as: 

𝑄𝑥𝑥
ref = 26.92 + 1.35 cos 2𝜋 (

2𝑥

𝐿𝑥
+
𝑦

𝐿𝑦
+
2𝑧

𝐿𝑧
) + 1.35 sin 2𝜋 (

𝑥

𝐿𝑥
+
2𝑦

𝐿𝑦
+
2𝑧

𝐿𝑧
) (44) 

and its normalised version 𝑄̅𝑥𝑥
ref is deduced by scaling down the reference stiffness 𝑄𝑥𝑥

ref by its 

dc term, i.e. 

𝑄̅𝑥𝑥
ref =

𝑄𝑥𝑥
ref

26.92
= 1 + 0.05 cos 2𝜋 (

2𝑥

𝐿𝑥
+
𝑦

𝐿𝑦
+
2𝑧

𝐿𝑧
) + 0.05 sin 2𝜋 (

𝑥

𝐿𝑥
+
2𝑦

𝐿𝑦
+
2𝑧

𝐿𝑧
) (45) 
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𝑄𝑥𝑥
ref has units of MPa, and 𝑄̅𝑥𝑥

ref is non-dimensional. 

The geometry was meshed in Mentat2010 (the pre/post-processing module of the commercial 

finite element package MscMarc™2010) using 100×100×100 eight-node hexahedral volume 

elements (HEX8) with full integration. The model was then analysed in Marc2010 and six 

strain components ϵxx, ϵyy, ϵzz, γyz, γzx and γxy were returned. 

The fact that the traction distributions are known in this case means that vector Y of Eq. (15) 

can be determined. Due to the symmetry of the cubic model, the integral of 6 traction  

components can be reduced to a summation of 3 identical sub-integrals of the form 

∫ 𝑇𝑖𝑢𝑖
∗𝑑𝑆𝑓
[𝑖]

𝑆𝑓
[𝑖]  in which i = x, y or z and 𝑆𝑓

[𝑖]
 is the surface perpendicular to the ith-direction 

over which the integral is calculated. The product between the traction Ti and the 

infinitesimal surface element 𝑑𝑆𝑓
[𝑖]

 can be approximated as a small concentrated force applied 

to the surface of each element. This product can be simply calculated as 𝑇𝑖𝑑𝑆𝑓
[𝑖] =

𝑇𝑖
𝑙𝑖

𝑁𝜖
(𝑖)

𝑙𝑗

𝑁𝜖
(𝑗) = 1 [

𝑁

𝑚𝑚2
] ×
10

100
[𝑚𝑚] ×

10

100
[𝑚𝑚] = 0.01[𝑁]; with i, j = x, y, z and 𝑁𝜖

(𝛼)
 the 

number of elements along direction α. This value is constant on every element. If 𝑁𝜖
(𝛼)

 is 

large enough, the initial sub-integral can be approximated by the summation of corresponding 

virtual displacements times the elementary force 𝑇𝑖𝑑𝑆𝑓
[𝑖]

. 

The six strain components ϵxx, ϵyy, ϵzz, ϵyz, ϵzx and ϵxy obtained from the forward finite element 

analysis of the cube were used as input data to the 3-D F-VFM script. The unknown Fourier 

series coefficients of the stiffness distribution were then calculated from the resolution 

equation (12), with the virtual fields summarised in Table 1. In this calculation, the number of 

cosine/sine terms of the stiffness Fourier series (9) took the value M = N = O = 15, which 

theoretically results in a total of NF = 30751 unknowns using Eq. (16). However this number 

can be reduced to 8191 unknowns by assuming that the stiffness Fourier series only consists 

of non-negative frequency terms due to the fact that the reference egg-box pattern only 

contains positive frequencies as presented in Eq. (44). This assumption is only made in this 

particular problem for the purpose of reducing the number of degrees of freedom. The chosen 

values for M, N and O are significantly higher than the value 2 that would be required to fully 

represent the stiffness distribution in Eq. (44) and (45), in order to provide a more realistic 

simulation of the performance of the algorithm on real data in the presence of noise. 
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The stiffness distribution of the 3-D ‘egg-box’ pattern reconstructed by the F-VFM is 

presented in Fig. 2(c). Even though they are not always clearly seen, ripples at the highest 

spatial frequency of the Fourier series stiffness expansion exist in the reconstructed result, in 

a similar way to those observed in the 2-D F-VFM [18, 19, 30]. Also as in the 2-D case, these 

can be filtered out by convolving the recovered stiffness distribution with an appropriate 

kernel. In this case a cuboid kernel was chosen, where the length of each side is equal to the 

pitch of the ripples along the corresponding axis. Further details of the filtering can be found 

in [26].  Ripple filtering does however result in a thin shell of low magnitude over the faces 

of the cuboid stiffness map. This is due to the fact that any point within a distance of half the 

pitch from the outer faces is influenced by the stiffness values outside the volume of interest, 

which are unknown and here assumed to be zero. In Fig. 2(c) to (f), this thin shell of low 

magnitude has been removed from the reconstructed stiffness distributions for clarity. The 

error distribution of the recovered stiffness in Fig. 2(d) shows a root mean square error value 

of ~0.1% whereas that of the unfiltered stiffness is ~0.3%. 

Sensitivity of the technique to different noise levels was also investigated in the context of 

the 3-D ‘egg-box’ pattern. Gaussian noise patterns of 10 different standard deviations σ 

ranging from 10-3 mm to 10-2 mm were introduced to the original displacements. The 

differentiation for strains from noisy displacements was carried out with 2 different kernel 

sizes 3×3×3 and 7×7×7 pixels, respectively. At each noise level, 50 computations 

corresponding to 50 random noise patterns were implemented, resulting in a total of 500 

stiffness reconstructions. The mean value of every set of 50 stiffness patterns reconstructed 

by the F-VFM at discrete noise levels, and its standard deviation, are plotted in Fig. 3. An 

example of a recovered ‘egg-box’ stiffness pattern at medium noise level σ = 5×10-3 mm is 

shown in Fig. 2(e) with a root mean square error of the stiffness reconstruction of ~0.7%. The 

corresponding error map is shown in Fig. 2(f).  

 

3.2. Example with numerical data and unknown boundary conditions 

This section uses the numerical strain data of the artificial ‘egg-box’ model under tri-axial 

loading conditions from the previous section. The information about the traction boundary 

conditions is, however, now assumed unknown. Distributions of stiffness and tractions are 

then reconstructed by the ‘windowed traction’ approach of the F-VFM described in section 
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2.2. Stiffness reconstruction was carried out with the choice of M = N = O = 15, resulting in a 

total of 8190 unknown coefficients. 

A cosine window function of the form 𝑊(𝑥, 𝑦, 𝑧) = 𝑊𝑥(𝑥)𝑊𝑦(𝑦)𝑊𝑧(𝑧) was used in this 

example where 

{
 
 

 
 𝑊𝑥 = cos

𝜋𝑥

𝐿𝑥
;𝑊𝑥,𝑥 = −

𝜋

𝐿𝑥
sin
𝜋𝑥

𝐿𝑥
;𝑊𝑥,𝑦 = 0; 𝑊𝑥,𝑧 = 0

𝑊𝑦 = cos
𝜋𝑦

𝐿𝑦
;𝑊𝑦,𝑦 = −

𝜋

𝐿𝑦
sin
𝜋𝑦

𝐿𝑦
;𝑊𝑦,𝑧 = 0;𝑊𝑦,𝑥 = 0

𝑊𝑧 = cos
𝜋𝑧

𝐿𝑧
;𝑊𝑧,𝑧 = −

𝜋

𝐿𝑧
sin
𝜋𝑧

𝐿𝑧
;𝑊𝑧,𝑥 = 0;𝑊𝑧,𝑦 = 0

 (46) 

The ‘egg-box’ stiffness distribution reconstructed by the ‘windowed traction’ approach is 

presented in Fig. 4. The root mean square  error of the stiffness reconstruction increases from 

~0.2% in the noise-free case (Fig. 4(b)) to ~3% in the presence of noise (Fig. 4(d)). The root 

mean square errors show the effect of high frequency terms being magnified by the noise, 

which becomes more severe than the case shown in Fig. 2. 

Distributions of unknown tractions can also be deduced from the corresponding reconstructed 

stiffness and measured strains using the formulae: 

𝑇𝑥 = (𝜖𝑥𝑥 +
𝜈

1 − 𝜈
(𝜖𝑦𝑦 + 𝜖𝑧𝑧))𝑄𝑥𝑥    (faces 1,4) 

𝑇𝑦 = (𝜖𝑦𝑦 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑧𝑧))𝑄𝑥𝑥    (faces 2,5) 

𝑇𝑧 = (𝜖𝑧𝑧 +
𝜈

1 − 𝜈
(𝜖𝑥𝑥 + 𝜖𝑦𝑦))𝑄𝑥𝑥    (faces 3,6) 

(47) 

In Fig. 5 the results of traction distribution reconstructions, with and without noise in the 

input strain fields, can be seen in comparison with the (normalised) amplitude of the 

reference traction of ~0.037 in a similar way to that described in section 3.1. It is worth 

noting that the reconstructed stiffness used to recover the tractions in Fig. 5 was not 

smoothed/ filtered due to the fact that data filtering generates a thin layer of low magnitude 

stiffness near the surfaces, which then introduces significantly more errors to the recovered 

tractions. The graph in Fig. 6 shows the sensitivity of the stiffness recovered by the 

‘windowed traction’ approach to different signal-to-noise ratios. Both kernel sizes result in a 

similar mean error, but the smaller kernel (size 3×3×3) has more variability in the calculated 

stiffness than does the larger one as the noise level increases. 
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3.3. Example with experimental data of incompressible materials 

In this section, the 3-D F-VFM is applied to the experimental MRI data of a two-phase test 

sample presented in [4]. The sample is a tissue-mimicking phantom of cuboidal shape of size 

80×64×154 mm3, having a spherical inclusion of 25mm diameter at the centre. Semicosil 921 

silicone gel with different mixing ratios was used to create the harder inclusion and the softer 

background material. The phantom was placed within the magnetic field of a MRI instrument 

for measuring its full-field displacements whilst a vertical displacement of ~2.4mm was 

applied to the phantom in the y-direction. Measurements on a force-deformation system [31] 

demonstrated that the inclusion is four times stiffer than the surrounding material, and that 

both phases were deformed within their elastic limits. Fig. 7 shows an eighth of the sample 

with uniform displacement boundary conditions applied to its top surface along the vertical 

axis. Details of how the signals were acquired and manipulated were presented in [16]. Raw 

data obtained from the MRI system are very noisy near the outer faces of the phantom and 

needed to be removed. Therefore, only data around the inclusion, covering a volume of 

46.41×46.72×42.19 mm3 (the volume highlighted in grey in Fig. 7) with 115×141×36 voxels 

inside it, were used. The origin of the measuring coordinate system is set to be at the centroid 

of the volume of interest. Since the useful measurement data do not occupy the entire volume 

of the phantom, traction distributions over the surfaces of the grey volume are not available. 

The ‘windowed traction’ approach was therefore used for the identification of the shear 

modulus distribution. 

The limits of the shear modulus Fourier series summation were chosen to be M = N = O = 9 

(covering both positive and negative frequencies), resulting in a total of 7219 unknown 

Fourier coefficients. The reason for M, N and O taking the specific value 9 is explained in the 

last paragraph of this section. The window function 𝑊 = (𝑥 −
𝐿𝑥

2
)(𝑥 +

𝐿𝑥

2
)(𝑦 −

𝐿𝑦

2
)(𝑦 +

𝐿𝑦

2
)(𝑧 −

𝐿𝑧

2
)(𝑧 +

𝐿𝑧

2
) which is identical to the one used in [16], was used for the identification. 

Application of the fast algorithm to the ‘windowed traction’ approach returned the shear 

modulus distribution in less than 3 minutes. The reconstructed modulus distribution is 

presented in Fig. 8(a) in the form of 36 cross-sections normal to the z-direction and compared 

with results from a finite-element based VFM in Fig. 8(b) and from the magnitude of the 

MRI signal in Fig. 8(c). No filtering of the modulus distribution was employed in this case.  
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In order to determine the modulus ratio between the inclusion and the more compliant 

background, the boundary between these regions must be determined. An estimator which 

bounds an ellipsoid around the region of higher modulus was used, similarly to the procedure 

in [16]. The ellipsoid is defined by 6 parameters: x0, y0, z0 for the coordinates of the 

ellipsoid’s centre, and rx, ry, rz the half-lengths of the ellipsoid along its principal axes. The 

standard ellipsoid centred at (x0, y0, z0) and aligned with the coordinate axes has the form: 

(𝑥 − 𝑥0)
2

𝑟𝑥2
+
(𝑦 − 𝑦0)

2

𝑟𝑦2
+
(𝑧 − 𝑧0)

2

𝑟𝑧2
= 1 (48) 

The 6 parameters which defined a unique ellipsoid were estimated through a simple 

fminsearch optimisation in MATLAB. The voxels whose centroids are inside this 

ellipsoid are considered as part of the inclusion, the rest belonging to the background 

material. An ellipsoid was used here instead of a sphere because the voxels do not have equal 

spacing along the three axes. Average modulus values are 2.64 for the higher modulus region 

(i.e. the inclusion) and 0.62 for the lower modulus region (i.e. background), resulting in a 

modulus ratio of 4.26 between the two phases. This value is not very different from the 

reference ratio of 4 reported in [4] using the measurement-based technique in [30], and 4.31 

using a finite-element-based virtual fields method [16]. Normalised modulus values for each 

phase of the phantom and their ratios are summarised and compared in Table 2. 

Several points regarding this result in relation to the finite-element-based method in [16] are 

worth making. Firstly, the finite-element-based VFM in [16] assumed that moduli of the 

voxels on the periphery took the values of 1. This assumption is, however, only appropriate if 

a priori knowledge about the phantom is given. The current F-VFM does not make any 

assumption about the modulus distribution in advance. Secondly, the authors in [16] only 

used strain field components along the y-direction (the loading direction) in the identification 

with the argument that these fields are more sensitive to the modulus variations than the 

others. The modulus reconstruction with the F-VFM, on the other hand, accounted for 

deformations in all directions. Thirdly, in terms of the numbers of degrees of freedom (dofs), 

the choice of N = 9 cosine/sine Fourier terms results in a total of ~10,000 unknowns whereas 

[16] generated ~120,000 unknowns, or ~12 times more dofs than those in the F-VFM. In 

principle, the number of dofs of the F-VFM can be further increased. However, the fast F-

VFM algorithm with fast Fourier transforms was limited by the size of the experimental 

dataset. Indeed, the number of 36 voxels in z-direction of the strain data only allows possible 
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limits of the indices n and o in Eq. (9) of –9 to 9 so that the indices of the terms defined in 

Eq. (23) do not go beyond the range –18 to 18. This limitation can in principle be avoided by 

interpolation of the input strain fields, e.g. by Fourier transforming them, zero padding [32] 

and then inverse Fourier transforming. 

 

4. Conclusions 

The paper presents a development of the virtual fields method to reconstruct 3-D modulus 

distributions from measured full-field data. Like the previously-published VFM algorithms, 

modulus distributions are reconstructed after a single computation step without any iteration. 

By using a 3-D Fourier series expansion of the unknown modulus distribution, and 

cosine/sine waves for the virtual fields, an efficient numerical algorithm based on the fast 

Fourier Transform allows volume identification problems with ~104 degrees of freedom to be 

solved in just a few minutes. The technique can be readily adapted to the case of unknown 

boundary conditions, although it then only provides modulus distributions normalised with 

respect to the average modulus value. It has been validated with numerical data from a 3-D 

‘egg-box’ stiffness pattern, for both the known and unknown boundary condition cases. 

Application of the technique to measured data of incompressible materials is possible, but 

requires a slightly different interpretation of the fundamental equation of the F-VFM. In the 

case studied, modulus results returned by the F-VFM are consistent with the values provided 

by other experimental and numerical techniques. 
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Table 1: Virtual displacement field components 𝑢𝑥
∗ , 𝑢𝑦
∗  and 𝑢𝑧

∗ and their derivatives used in 

the 3-D F-VFM. 

Sub-matrix 𝑝 𝑢𝑥
∗  

𝜕𝑢𝑥
∗

𝜕𝑥
 

𝜕𝑢𝑥
∗

𝜕𝑦
 

𝜕𝑢𝑥
∗

𝜕𝑧
 

A, B 

0 𝑥𝑐0,𝑞,𝑟 𝑐0,𝑞,𝑟 −
2𝜋𝑞

𝐿𝑦
𝑥𝑠0,𝑞,𝑟 −

2𝜋𝑟

𝐿𝑧
𝑧𝑠0,𝑞,𝑟 

> 0 
𝐿𝑥
2𝜋𝑝
𝑠𝑝,𝑞,𝑟 𝑐𝑝,𝑞,𝑟 

𝐿𝑥
𝐿𝑦

𝑞

𝑝
𝑐𝑝,𝑞,𝑟 

𝐿𝑥
𝐿𝑧

𝑟

𝑝
𝑐𝑝,𝑞,𝑟 

C, D 

0 𝑥𝑠0,𝑞,𝑟 𝑠0,𝑞,𝑟 
2𝜋𝑞

𝐿𝑦
𝑥𝑐0,𝑞,𝑟 

2𝜋𝑟

𝐿𝑧
𝑧𝑐0,𝑞,𝑟 

> 0 −
𝐿𝑥
2𝜋𝑝
𝑐𝑝,𝑞,𝑟 𝑠𝑝,𝑞,𝑟 

𝐿𝑥
𝐿𝑦

𝑞

𝑝
𝑠𝑝,𝑞,𝑟 

𝐿𝑥
𝐿𝑧

𝑟

𝑝
𝑠𝑝,𝑞,𝑟 

 𝑞 𝑢𝑦
∗  

𝜕𝑢𝑦
∗

𝜕𝑥
 

𝜕𝑢𝑦
∗

𝜕𝑦
 

𝜕𝑢𝑦
∗

𝜕𝑧
 

A, B 

0 𝑦𝑐𝑝,0,𝑟 −
2𝜋𝑝

𝐿𝑥
𝑦𝑠𝑝,0,𝑟 𝑐𝑝,0,𝑟 −

2𝜋𝑟

𝐿𝑧
𝑦𝑠𝑝,0,𝑟 

> 0 
𝐿𝑦

2𝜋𝑞
𝑠𝑝,𝑞,𝑟 

𝐿𝑦

𝐿𝑥

𝑝

𝑞
𝑐𝑝,𝑞,𝑟 𝑐𝑝,𝑞,𝑟 

𝐿𝑦

𝐿𝑧

𝑟

𝑞
𝑐𝑝,𝑞,𝑟 

C, D 

0 𝑦𝑠𝑝,0,𝑟 
2𝜋𝑝

𝐿𝑥
𝑦𝑐𝑝,0,𝑟 𝑠𝑝,0,𝑟 

2𝜋𝑟

𝐿𝑧
𝑦𝑐𝑝,0,𝑟 

> 0 −
𝐿𝑦

2𝜋𝑞
𝑐𝑝,𝑞,𝑟 

𝐿𝑦

𝐿𝑥

𝑝

𝑞
𝑠𝑝,𝑞,𝑟 𝑠𝑝,𝑞,𝑟 

𝐿𝑦

𝐿𝑧

𝑟

𝑞
𝑠𝑝,𝑞,𝑟 

 𝑟 𝑢𝑧
∗ 

𝜕𝑢𝑧
∗

𝜕𝑥
 

𝜕𝑢𝑧
∗

𝜕𝑦
 

𝜕𝑢𝑧
∗

𝜕𝑧
 

A, B 

0 𝑧𝑐𝑝,𝑞,0 −
2𝜋𝑝

𝐿𝑥
𝑧𝑠𝑝,𝑞,0 −

2𝜋𝑞

𝐿𝑦
𝑧𝑠𝑝,𝑞,0 𝑐𝑝,𝑞,0 

> 0 
𝐿𝑧
2𝜋𝑟
𝑠𝑝,𝑞,𝑟 

𝐿𝑧
𝐿𝑥

𝑝

𝑟
𝑐𝑝,𝑞,𝑟 

𝐿𝑧
𝐿𝑦

𝑞

𝑟
𝑐𝑝,𝑞,𝑟 𝑐𝑝,𝑞,𝑟 

C, D 

0 𝑧𝑠𝑝,𝑞,0 
2𝜋𝑝

𝐿𝑥
𝑧𝑐𝑝,𝑞,0 

2𝜋𝑞

𝐿𝑦
𝑧𝑐𝑝,𝑞,0 𝑠𝑝,𝑞,0 

> 0 −
𝐿𝑧
2𝜋𝑟
𝑐𝑝,𝑞,𝑟 

𝐿𝑧
𝐿𝑥

𝑝

𝑟
𝑠𝑝,𝑞,𝑟 

𝐿𝑧
𝐿𝑦

𝑞

𝑟
𝑠𝑝,𝑞,𝑟 𝑠𝑝,𝑞,𝑟 
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Table 2: Comparison of (average) shear moduli and their ratios identified by different methods. 

Methods 

Average values of  

non-dimensional modulus Modulus ratio 

Background Inclusion 

Measurement-based method [4, 31] – – 4.0 

Finite-element-based VFM [16] 0.69 2.98 4.31 

Fourier-series-based VFM 0.62 2.64 4.26 
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Fig. 1. Diagram of a cuboidal volume subject to normal and shear stresses (or tractions) over its faces.  
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Fig. 2. Reconstruction of a 3-D ‘egg-box’ stiffness distribution, using highest normalised spatial 

frequencies M = N = O = 15 and known boundary conditions. (a) the reference ‘egg-box’ stiffness 

distribution, and (b) the corresponding strain distribution 𝜖𝑦𝑦 from numerical analysis. (c) and (d) are 

respectively the reconstructed ‘egg-box’ stiffness using the 3-D F-VFM and its corresponding 

stiffness error (or the difference between (c) and the reference distribution (a)) in the noise-free case. 

(e) and (f) are respectively the same as (c) and (d) computed when Gaussian noise of standard 

deviation σ = 5×10-3 mm was introduced to the input displacement fields. In figures (c) to (f), a thin 

shell of low magnitude data around the cube due to the filtering technique was removed, and an eighth 

of the cube is cut out to allow information inside the cube to be visualised. The coordinate system is 

the same as in Fig. 1. 
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Fig. 3. Sensitivity of the 3-D F-VFM to a variety of noise levels in the identification of a 3-D ‘egg-

box’ stiffness pattern, with known boundary tractions and N = 15. At each noise level, 50 

computations corresponding to 50 random noise patterns from noisy displacements were 

implemented. The differentiation for strains from noisy displacements was carried out with two 

different kernel sizes: 3×3×3 and 7×7×7 pixels. The stiffness errors (markers) and the standard 

deviations in the mean of errors (error bars) were computed from the difference of the recovered 

stiffness after data smoothing/filtering with respect to the reference.  
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Fig. 4. Reconstruction of a normalised 3-D ‘egg-box’ stiffness pattern under unknown loading 

conditions using the ‘windowed traction’ technique at highest spatial frequencies M = N = O = 15. (a) 

and (b) are respectively the reconstructed ‘egg-box’ stiffness and its corresponding stiffness error (i.e., 

the difference between (a) and the normalised reference distribution) in the noise-free case. (c) and (d) 

are respectively the same as (a) and (b) computed when Gaussian noise of standard deviation σ = 

5×10-3 mm was introduced to the input displacement fields. The coordinate system is the same as in 

Fig. 1. 
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Fig. 5. Recovery of unknown non-dimensional traction distributions Tx, Ty and Tz (top down order) 

over the faces of a 3-D cube of an ‘egg-box’ stiffness pattern using the ‘windowed traction’ approach. 

Tractions are computed from their corresponding unfiltered stiffness maps, and the input strain fields. 

(a),(b),(c) are the noise-free case whilst (d),(e),(f) are for the medium noise case (standard deviation of 

5×10-3 mm in the input displacement fields). The corresponding non-dimensional reference tractions 

take the value ~0.037. 
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Fig. 6. Sensitivity of the F-VFM-adapted ‘windowed traction’ technique to a variety of noise levels in 

the identification of a (normalised) 3-D ‘egg-box’ stiffness pattern, with N = 15. At each noise level, 

50 computations corresponding to 50 random noise patterns from noisy displacements were 

implemented. The differentiation for strains from noisy displacements was carried out with two 

different kernel sizes 3×3×3 and 7×7×7 pixels. The normalised stiffness errors (markers) and the 

standard deviations in the mean of errors (error bars) were computed from the difference of the 

recovered stiffness after data smoothing/filtering with respect to the reference. Stiffness values on 

vertical axis are normalised.   
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Fig. 7. Schematic of one eighth of the tested phantom under distributed compressive loads with the 

volume of interest being highlighted.  
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Fig. 8. Reconstruction of shear modulus distribution of a two-phase phantom from its MRI data by (a) 

the F-VFM and (b) the finite-element-based VFM [16]; (c) the magnitude of the MRI signal [4]. 

(a)(b)(c) share the same colour bar which is non-dimensional. 
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