113 research outputs found

    Childhood loneliness as a predictor of adolescent depressive symptoms: an 8-year longitudinal study

    Get PDF
    Childhood loneliness is characterised by children’s perceived dissatisfaction with aspects of their social relationships. This 8-year prospective study investigates whether loneliness in childhood predicts depressive symptoms in adolescence, controlling for early childhood indicators of emotional problems and a sociometric measure of peer social preference. 296 children were tested in the infant years of primary school (T1 5 years of age), in the upper primary school (T2 9 years of age) and in secondary school (T3 13 years of age). At T1, children completed the loneliness assessment and sociometric interview. Their teachers completed externalisation and internalisation rating scales for each child. At T2, children completed a loneliness assessment, a measure of depressive symptoms, and the sociometric interview. At T3, children completed the depressive symptom assessment. An SEM analysis showed that depressive symptoms in early adolescence (age 13) were predicted by reports of depressive symptoms at age 8, which were themselves predicted by internalisation in the infant school (5 years). The interactive effect of loneliness at 5 and 9, indicative of prolonged loneliness in childhood, also predicted depressive symptoms at age 13. Parent and peer-related loneliness at age 5 and 9, peer acceptance variables, and duration of parent loneliness did not predict depression. Our results suggest that enduring peer-related loneliness during childhood constitutes an interpersonal stressor that predisposes children to adolescent depressive symptoms. Possible mediators are discussed

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al

    A Novel RNA Transcript with Antiapoptotic Function Is Silenced in Fragile X Syndrome

    Get PDF
    Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1–2%) of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb) that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5′ UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders

    Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis.</p> <p>Methods</p> <p>rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components.</p> <p>Results</p> <p>rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology.</p> <p>Conclusions</p> <p>Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.</p

    RNA Gain-of-Function in Spinocerebellar Ataxia Type 8

    Get PDF
    Microsatellite expansions cause a number of dominantly-inherited neurological diseases. Expansions in coding-regions cause protein gain-of-function effects, while non-coding expansions produce toxic RNAs that alter RNA splicing activities of MBNL and CELF proteins. Bi-directional expression of the spinocerebellar ataxia type 8 (SCA8) CTG CAG expansion produces CUG expansion RNAs (CUGexp) from the ATXN8OS gene and a nearly pure polyglutamine expansion protein encoded by ATXN8 CAGexp transcripts expressed in the opposite direction. Here, we present three lines of evidence that RNA gain-of-function plays a significant role in SCA8: 1) CUGexp transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons in the brain; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUGexp transcripts trigger splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4). In vivo optical imaging studies in SCA8 mice confirm that Gabt4 upregulation is associated with the predicted loss of GABAergic inhibition within the granular cell layer. These data demonstrate that CUGexp transcripts dysregulate MBNL/CELF regulated pathways in the brain and provide mechanistic insight into the CNS effects of other CUGexp disorders. Moreover, our demonstration that relatively short CUGexp transcripts cause RNA gain-of-function effects and the growing number of antisense transcripts recently reported in mammalian genomes suggest unrecognized toxic RNAs contribute to the pathophysiology of polyglutamine CAG CTG disorders

    Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence

    Get PDF
    © 2017 The Author(s). Peatland ecosystems contain one-third of the world's soil carbon store and many have been exposed to drought leading to a loss of carbon. Understanding biogeochemical mechanisms affecting decomposition in peatlands is essential for improving resilience of ecosystem function to predicted climate change. We investigated biogeochemical changes along a chronosequence of hydrological restoration (dry eroded gully, drain-blocke

    Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy

    Get PDF
    More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities due both to a sense expanded-repeat transcript and to an anti-sense expanded-repeat transcript. We established a Drosophila model for DM1 and tested the role of interactions between expanded CTG transcripts and expanded CAG repeat transcripts. These studies revealed dramatically enhanced toxicity in flies co-expressing CTG with CAG expanded repeats. Expression of the two transcripts led to novel pathogenesis with the generation of dcr-2 and ago2-dependent 21-nt triplet repeat-derived siRNAs. These small RNAs targeted the expression of CAG-containing genes, such as Ataxin-2 and TATA binding protein (TBP), which bear long CAG repeats in both fly and man. These findings indicate that the generation of triplet repeat-derived siRNAs may dramatically enhance toxicity in human repeat expansion diseases in which anti-sense transcription occurs

    Ubiquitous Expression of CUG or CAG Trinucleotide Repeat RNA Causes Common Morphological Defects in a Drosophila Model of RNA-Mediated Pathology

    Get PDF
    Expanded DNA repeat sequences are known to cause over 20 diseases, including Huntington’s disease, several types of spinocerebellar ataxia and myotonic dystrophy type 1 and 2. A shared genetic basis, and overlapping clinical features for some of these diseases, indicate that common pathways may contribute to pathology. Multiple mechanisms, mediated by both expanded homopolymeric proteins and expanded repeat RNA, have been identified by the use of model systems, that may account for shared pathology. The use of such animal models enables identification of distinct pathways and their ‘molecular hallmarks’ that can be used to determine the contribution of each pathway in human pathology. Here we characterise a tergite disruption phenotype in adult flies, caused by ubiquitous expression of either untranslated CUG or CAG expanded repeat RNA. Using the tergite phenotype as a quantitative trait we define a new genetic system in which to examine ‘hairpin’ repeat RNA-mediated cellular perturbation. Further experiments use this system to examine whether pathways involving Muscleblind sequestration or Dicer processing, which have been shown to mediate repeat RNA-mediated pathology in other model systems, contribute to cellular perturbation in this model

    Polymorphisms of TP53 codon 72 with breast carcinoma risk: evidence from 12226 cases and 10782 controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, TP53 codon 72 polymorphisms have been implicated as risk factors for various cancers. A number of studies have conducted on the association of TP53 codon 72 polymorphisms with susceptibility to breast carcinoma and have yielded inconclusive results. The aim of the present study was to derive a more precise estimation of the relationship.</p> <p>Methods</p> <p>We conducted a search in the Medline, EMBASE, OVID, Sciencedirect, and Chinese National Knowledge Infrastructure (CNKI) without a language limitation, covering all papers published up to Jan 2009. The associated literature was acquired through deliberate searching and selected based on the established inclusion criteria for publications.</p> <p>Results</p> <p>A total of seventeen case-control studies, including 12226 cases and 10782 controls, met the included criteria and thus were selected. Ultimately, the relevant data were extracted and further analyzed using systematic meta-analyses. Overall, no associations of TP53 codon 72 polymorphisms with breast carcinoma were observed (for Arg/Arg vs Pro/Pro: OR = 1.20; 95%CI = 0.96–1.50; for dominant model: OR = 1.12; 95%CI = 0.96–1.32; for recessive model: OR = 1.13; 95%CI = 0.98–1.31). In the subgroup analysis by ethnicity, statistically similar results were obtained when the data were stratified as Asians, Caucasians and Africans.</p> <p>Conclusion</p> <p>Collectively, the results of the present study suggest that <it>TP53 codon 72 </it>polymorphisms might not be a low-penetrant risk factor for developing breast carcinoma.</p
    • …
    corecore