42 research outputs found

    Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Get PDF
    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior

    Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    Get PDF
    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage

    A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk

    Get PDF
    Background This review provides a reappraisal of the potential effects of dairy foods, including dairy fats, on cardiovascular disease (CVD)/coronary heart disease (CHD) risk. Commodities and foods containing saturated fats are of particular focus as current public dietary recommendations are directed toward reducing the intake of saturated fats as a means to improve the overall health of the population. A conference of scientists from different perspectives of dietary fat and health was convened in order to consider the scientific basis for these recommendations. Aims This review and summary of the conference focus on four key areas related to the biology of dairy foods and fats and their potential impact on human health: (a) the effect of dairy foods on CVD in prospective cohort studies; (b) the impact of dairy fat on plasma lipid risk factors for CVD; (c) the effects of dairy fat on non-lipid risk factors for CVD; and (d) the role of dairy products as essential contributors of micronutrients in reference food patterns for the elderly. Conclusions Despite the contribution of dairy products to the saturated fatty acid composition of the diet, and given the diversity of dairy foods of widely differing composition, there is no clear evidence that dairy food consumption is consistently associated with a higher risk of CVD. Thus, recommendations to reduce dairy food consumption irrespective of the nature of the dairy product should be made with cautionJ. Bruce German, Robert A. Gibson, Ronald M. Krauss, Paul Nestel, Benoît Lamarche, Wija A. van Staveren, Jan M. Steijns, Lisette C. P. G. M. de Groot, Adam L. Lock and Frédéric Destaillat

    Representing Where along with What Information in a Model of a Cortical Patch

    Get PDF
    Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects

    Association between milk and milk product consumption and anthropometric measures in adult men and women in India: a cross-sectional study.

    Get PDF
    BACKGROUND: The nutritional aetiology of obesity remains unclear, especially with regard to the role of dairy products in developing countries. OBJECTIVE: To examine whether milk/milk product consumption is associated with obesity and high waist circumference among adult Indians. METHODS: Information on plain milk, tea, curd and buttermilk/lassi consumption assessed using a Food Frequency Questionnaire was obtained from the cross-sectional sib-pair designed Indian Migration Study (3698 men and 2659 women), conducted at four factory locations across north, central and south India. The anthropometric measures included were Body Mass Index (BMI) and Waist Circumference (WC). Mixed-effect logistic regression models were conducted to accommodate sib-pair design and adjust for potential confounders. RESULTS: After controlling for potential confounders, the risk of being obese (BMI ≥ 25 kg/m(2)) was lower among women (OR = 0.57;95%CI:0.43-0.76;p ≤ 0.0001) and men (OR = 0.67;95%CI: 0.51-0.87;p = 0.005), and the risk of a high WC (men: >90 cm; women: >80 cm) was lower among men (OR = 0.71;95%CI:0.54-0.93;p = 0.005) and women (OR = 0.79;95%CI:0.59-1.05;p>0.05) who consume ≥1 portions of plain milk daily than those who do not consume any milk. The inverse association between daily plain milk consumption and obesity was also confirmed in sibling-pair analyses. Daily tea consumption of ≥ 1 portion was associated with obesity (OR = 1.51;95%CI:1.00-2.25;p>0.050) and high WC (OR = 1.65;95%CI:1.08-2.51;p>0.019) among men but not among women but there was no strong evidence of association of curd and buttermilk/lassi consumption with obesity and high waist circumference among both men and women. CONCLUSIONS: The independent, inverse association of daily plain milk consumption with the risk of being obese suggests that high plain milk intake may lower the risk of obesity in adult Indians. However, this is an observational finding and uncontrolled confounding cannot be excluded as an explanation for the association. Therefore, confirmatory studies are needed to clarify this relationship
    corecore