80 research outputs found

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014

    Application of Biomarkers in Cancer Risk Management: Evaluation from Stochastic Clonal Evolutionary and Dynamic System Optimization Points of View

    Get PDF
    Aside from primary prevention, early detection remains the most effective way to decrease mortality associated with the majority of solid cancers. Previous cancer screening models are largely based on classification of at-risk populations into three conceptually defined groups (normal, cancer without symptoms, and cancer with symptoms). Unfortunately, this approach has achieved limited successes in reducing cancer mortality. With advances in molecular biology and genomic technologies, many candidate somatic genetic and epigenetic “biomarkers” have been identified as potential predictors of cancer risk. However, none have yet been validated as robust predictors of progression to cancer or shown to reduce cancer mortality. In this Perspective, we first define the necessary and sufficient conditions for precise prediction of future cancer development and early cancer detection within a simple physical model framework. We then evaluate cancer risk prediction and early detection from a dynamic clonal evolution point of view, examining the implications of dynamic clonal evolution of biomarkers and the application of clonal evolution for cancer risk management in clinical practice. Finally, we propose a framework to guide future collaborative research between mathematical modelers and biomarker researchers to design studies to investigate and model dynamic clonal evolution. This approach will allow optimization of available resources for cancer control and intervention timing based on molecular biomarkers in predicting cancer among various risk subsets that dynamically evolve over time

    The feasibility and results of a population-based approach to evaluating prostate-specific antigen screening for prostate cancer in men with a raised familial risk

    Get PDF
    The feasibility of a population-based evaluation of screening for prostate cancer in men with a raised familial risk was investigated by studying reasons for non-participation and uptake rates according to postal recruitment and clinic contact. The levels of prostate-specific antigen (PSA) and the positive predictive values (PPV) for cancer in men referred with a raised PSA and in those biopsied were analysed. First-degree male relatives (FDRs) were identified through index cases (ICs): patients living in two regions of England and diagnosed with prostate cancer at age ⩽65 years from 1998 to 2004. First-degree relatives were eligible if they were aged 45–69 years, living in the UK and had no prior diagnosis of prostate cancer. Postal recruitment was low (45 of 1687 ICs agreed to their FDR being contacted: 2.7%) but this was partly due to ICs not having eligible FDRs. A third of ICs in clinic had eligible FDRs and 49% (192 out of 389) agreed to their FDR(s) being contacted. Of 220 eligible FDRs who initially consented, 170 (77.3%) had a new PSA test taken and 32 (14.5%) provided a previous PSA result. Among the 170 PSA tests, 10% (17) were ⩾4 ng ml−1 and 13.5% (23) tests above the age-related cutoffs. In 21 men referred, five were diagnosed with prostate cancer (PPV 24%; 95% CI 8, 47). To study further the effects of screening, patients with a raised familial risk should be counselled in clinic about screening of relatives and data routinely recorded so that the effects of screening on high-risk groups can be studied

    The Potential for Enhancing the Power of Genetic Association Studies in African Americans through the Reuse of Existing Genotype Data

    Get PDF
    We consider the feasibility of reusing existing control data obtained in genetic association studies in order to reduce costs for new studies. We discuss controlling for the population differences between cases and controls that are implicit in studies utilizing external control data. We give theoretical calculations of the statistical power of a test due to Bourgain et al (Am J Human Genet 2003), applied to the problem of dealing with case-control differences in genetic ancestry related to population isolation or population admixture. Theoretical results show that there may exist bounds for the non-centrality parameter for a test of association that places limits on study power even if sample sizes can grow arbitrarily large. We apply this method to data from a multi-center, geographically-diverse, genome-wide association study of breast cancer in African-American women. Our analysis of these data shows that admixture proportions differ by center with the average fraction of European admixture ranging from approximately 20% for participants from study sites in the Eastern United States to 25% for participants from West Coast sites. However, these differences in average admixture fraction between sites are largely counterbalanced by considerable diversity in individual admixture proportion within each study site. Our results suggest that statistical correction for admixture differences is feasible for future studies of African-Americans, utilizing the existing controls from the African-American Breast Cancer study, even if case ascertainment for the future studies is not balanced over the same centers or regions that supplied the controls for the current study

    Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels

    Get PDF
    Measurements of serum prostate-specific antigen (PSA) protein levels form the basis for a widely used test to screen men for prostate cancer. Germline variants in the gene that encodes the PSA protein (KLK3) have been shown to be associated with both serum PSA levels and prostate cancer. Based on a resequencing analysis of a 56 kb region on chromosome 19q13.33, centered on the KLK3 gene, we fine mapped this locus by genotyping tag SNPs in 3,522 prostate cancer cases and 3,338 controls from five case–control studies. We did not observe a strong association with the KLK3 variant, reported in previous studies to confer risk for prostate cancer (rs2735839; P = 0.20) but did observe three highly correlated SNPs (rs17632542, rs62113212 and rs62113214) associated with prostate cancer [P = 3.41 × 10−4, per-allele trend odds ratio (OR) = 0.77, 95% CI = 0.67–0.89]. The signal was apparent only for nonaggressive prostate cancer cases with Gleason score <7 and disease stage <III (P = 4.72 × 10−5, per-allele trend OR = 0.68, 95% CI = 0.57–0.82) and not for advanced cases with Gleason score >8 or stage ≥III (P = 0.31, per-allele trend OR = 1.12, 95% CI = 0.90–1.40). One of the three highly correlated SNPs, rs17632542, introduces a non-synonymous amino acid change in the KLK3 protein with a predicted benign or neutral functional impact. Baseline PSA levels were 43.7% higher in control subjects with no minor alleles (1.61 ng/ml, 95% CI = 1.49–1.72) than in those with one or more minor alleles at any one of the three SNPs (1.12 ng/ml, 95% CI = 0.96–1.28) (P = 9.70 × 10−5). Together our results suggest that germline KLK3 variants could influence the diagnosis of nonaggressive prostate cancer by influencing the likelihood of biopsy

    SLC6A3 and body mass index in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the contribution of the dopamine transporter to dopaminergic reward-related behaviors and anthropometry, we evaluated associations between polymorphisms at the dopamine transporter gene(<it>SLC6A3</it>) and body mass index (BMI), among participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.</p> <p>Methods</p> <p>Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem repeat (3' VNTR) polymorphism) at the <it>SLC6A3 </it>gene were genotyped in 2,364 participants selected from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated and categorized as underweight, normal, overweight and obese (<18.5, 18.5–24.9, 25.0–29.9, or ≥ 30 kg/m<sup>2</sup>, respectively). Odds ratios (ORs) and 95% confidence intervals (CIs) of <it>SLC6A3 </it>genotypes and haplotypes were computed using conditional logistic regression.</p> <p>Results</p> <p>Compared with individuals having a normal BMI, obese individuals at the time of the baseline study questionnaire were less likely to possess the <it>3' </it>VNTR variant allele with 9 copies of the repeated sequence in a dose-dependent model (** is referent; OR<sub>*9 </sub>= 0.80, OR<sub>99 </sub>= 0.47, p<sub>trend </sub>= 0.005). Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-G-* is referent; OR<sub>A-C-G-9 </sub>= 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individuals (A-C-G-* is referent; OR<sub>A-C-G-9 </sub>= 0.70, 95% CI 0.49–0.99, p = 0.04) were less likely to possess the haplotype with the 3'variant allele (A-C-G-9).</p> <p>Conclusion</p> <p>Our results support a role of genetic variation at the dopamine transporter gene, <it>SLC6A3</it>, as a modifier of BMI.</p

    Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors

    Get PDF
    The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up

    Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors

    Get PDF
    The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up
    corecore