273 research outputs found

    Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions

    Full text link
    We study fermions coupled to Yang-Mills matrix models from the point of view of emergent gravity. The matrix model Dirac operator provides an appropriate coupling for fermions to the effective gravitational metric for general branes with nontrivial embedding, albeit with a non-standard spin connection. This generalizes previous results for 4-dimensional matrix models. Integrating out the fermions in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the Poisson tensor to the Riemann tensor, and a dilaton-like term.Comment: 34 pages; minor change

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Analytic Results for Higgs Production in Bottom Fusion

    Get PDF
    We evaluate analytically the cross section for Higgs production plus one jet through bottom quark fusion. By considering the small pT limit we derive expressions for the resummation coefficients governing the structure of large logarithms, and compare these expressions with those available in the literature.Comment: 14 pages, 7 figure

    Vacuum stability, neutrinos, and dark matter

    Full text link
    Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM gauge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the β\beta function of the Higgs quartic coupling λ\lambda and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of SU(2)LSU(2)_{L} group, will bring the additional positive contributions to the gauge coupling g2g_{2} renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio

    Baryon Washout, Electroweak Phase Transition, and Perturbation Theory

    Get PDF
    We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-by-order in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    Inflammatory myofibroblastic tumor of epididymis: a case report and review of literature

    Get PDF
    Background Epididymal inflammatory myofibroblastic tumor, also known by various other synonyms is a rare benign disease. Only eight cases have been reported to date. The most common presentation is a scrotal mass of variable duration. For a scrotal mass it is difficult to distinguish a benign or malignant etiology, in addition to the origin whether from testis or epididymis. As a result the definitive diagnosis can only be established by surgical exploration. Case presentation We report the ninth case of epididymal IMT who based on clinical and radiological findings underwent radical orchidectomy, with the histology suggestive of inflammatory myofibroblastic tumor. At 4 years follow up the patient is free of disease recurrence. Conclusion IMT though rare should be considered in the differential diagnosis of epididymal mass. Clinically it is often difficult to distinguish the origin of mass and even though the disease has benign nature and course it is crucial to counsel patients for orchidectomy as definitive diagnosis is established on surgical exploration

    MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    Get PDF
    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N → νl+l− and N → l±π∓ while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N → νγ and N → νπ0. Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.
    • …
    corecore