130 research outputs found

    Tick paralysis or poliomyelits

    Get PDF
    Click on the link to view

    Arc magmas sourced from melange diapirs in subduction zones

    Get PDF
    Author Posting. Β© The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 862-867, doi:10.1038/ngeo1634.At subduction zones, crustal material is recycled back into the mantle. A certain proportion, however, is returned to the overriding plate via magmatism. The magmas show a characteristic range of compositions that have been explained by three-component mixing in their source regions: hydrous fluids derived from subducted altered oceanic crust and components derived from the thin sedimentary veneer are added to the depleted peridotite in the mantle beneath the volcanoes. However, currently no uniformly accepted model exists for the physical mechanism that mixes the three components and transports them from the slab to the magma source. Here we present an integrated physico-chemical model of subduction zones that emerges from a review of the combined findings of petrology, modelling, geophysics, and geochemistry: Intensely mixed metamorphic rock formations, so-called mΓ©langes, form along the slab-mantle interface and comprise the characteristic trace-element patterns of subduction-zone magmatic rocks. We consider mΓ©lange formation the physical mixing process that is responsible for the geochemical three-component pattern of the magmas. Blobs of low-density mΓ©lange material, so-called diapirs, rise buoyantly from the surface of the subducting slab and provide a means of transport for well-mixed materials into the mantle beneath the volcanoes, where they produce melt. Our model provides a consistent framework for the interpretation of geophysical, petrological and geochemical data of subduction zones.H.M. was funded by the J. LamarWorzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. Funding from NSF grant #1119403 (G. Harlow) is acknowledged.2013-05-1

    Genetic polymorphisms are associated with serum levels of sex hormone binding globulin in postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogen activity plays a critical role in bone homeostasis. The serum levels of sex hormone binding globulin (SHBG) influence free estrogen levels and activity on target tissues. The objective of this study was to analyze the influence of common polymorphisms of the <it>SHBG </it>gene on serum SHBG, bone mineral density (BMD), and osteoporotic fractures.</p> <p>Methods</p> <p>Four biallelic polymorphisms of the <it>SHBG </it>gene were studied by means of Taqman assays in 753 postmenopausal women. BMD was measured by DXA and serum SHBG was measured by ELISA.</p> <p>Results</p> <p>Age, body weight, and two polymorphisms of the <it>SHBG </it>gene (rs6257 and rs1799941 [A/G]) were significantly associated with serum SHBG in unadjusted and age- and weight-adjusted models. Alleles at the rs1799941 locus showed the strongest association with serum SHBG (p = 0.0004). The difference in SHBG levels between women with AA and GG genotypes at the rs1799941 locus was 39%. There were no significant differences in BMD across SHBG genotypes. The genotypes showed similar frequency distributions in control women and women with vertebral or hip fractures.</p> <p>Conclusion</p> <p>Some common genetic variants of the <it>SHBG </it>gene, and particularly an A/G polymorphism situated in the 5' region, influence serum SHBG levels. However, a significant association with BMD or osteoporotic fractures has not been demonstrated.</p

    Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition

    Get PDF
    Single-celled Leishmania parasites, transmitted by sand flies, infect humans and other mammals in many tropical and sub-tropical regions, giving rise to a spectrum of diseases called the leishmaniases. Species of parasite within the Leishmania genus can be divided into two groups (referred to as sub-genera) that are separated by up to 100 million years of evolution yet are highly related at the genome level. Our research is focused on identifying gene differences between these sub-genera that may identify proteins that impact on the transmission and pathogenicity of different Leishmania species. Here we report the presence of a highly-variant genomic locus (OHL) that was previously described as absent in parasites of the L. (Viannia) subgenus (on the basis of lack of key genes) but is present and well-characterised (as the LmcDNA16 locus) in all members of the alternative subgenus, L. (Leishmania). We demonstrate that the proteins encoded within the LmcDNA16 and OHL loci are similar in their structure and surface localisation in mammalian-infective amastigotes, despite significant differences in their DNA sequences. Most importantly, we demonstrate that the OHL locus proteins, like the HASP proteins from the LmcDNA16 locus, contain highly variable amino acid repeats that are antigenic in man and may therefore contribute to future vaccine development

    Persistent Gastric Colonization with Burkholderia pseudomallei and Dissemination from the Gastrointestinal Tract following Mucosal Inoculation of Mice

    Get PDF
    Melioidosis is a disease of humans caused by opportunistic infection with the soil and water bacterium Burkholderia pseudomallei. Melioidosis can manifest as an acute, overwhelming infection or as a chronic, recurrent infection. At present, it is not clear where B. pseudomallei resides in the mammalian host during the chronic, recurrent phase of infection. To address this question, we developed a mouse low-dose mucosal challenge model of chronic B. pseudomallei infection and investigated sites of bacterial persistence over 60 days. Sensitive culture techniques and selective media were used to quantitate bacterial burden in major organs, including the gastrointestinal (GI) tract. We found that the GI tract was the primary site of bacterial persistence during the chronic infection phase, and was the only site from which the organism could be consistently cultured during a 60-day infection period. The organism could be repeatedly recovered from all levels of the GI tract, and chronic infection was accompanied by sustained low-level fecal shedding. The stomach was identified as the primary site of GI colonization as determined by fluorescent in situ hybridization. Organisms in the stomach were associated with the gastric mucosal surface, and the propensity to colonize the gastric mucosa was observed with 4 different B. pseudomallei isolates. In contrast, B. pseudomallei organisms were present at low numbers within luminal contents in the small and large intestine and cecum relative to the stomach. Notably, inflammatory lesions were not detected in any GI tissue examined in chronically-infected mice. Only low-dose oral or intranasal inoculation led to GI colonization and development of chronic infection of the spleen and liver. Thus, we concluded that in a mouse model of melioidosis B. pseudomallei preferentially colonizes the stomach following oral inoculation, and that the chronically colonized GI tract likely serves as a reservoir for dissemination of infection to extra-intestinal sites

    The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000

    Get PDF
    The genomes of several tsetse-transmitted African trypanosomes (Trypanosoma brucei brucei, T. b. gambiense, T. vivax, T. congolense) have been sequenced and are available to search online. The trypanosome strains chosen for the genome sequencing projects were selected because they had been well characterised in the laboratory, but all were isolated several decades ago. The purpose of this short review is to provide some background information on the origins and biological characterisation of these strains as a source of reference for future users of the genome data. With high throughput sequencing of many more trypanosome genomes in prospect, it is important to understand the phylogenetic relationships of the genome strains

    The Human Nasal Microbiota and Staphylococcus aureus Carriage

    Get PDF
    BACKGROUND: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of approximately 50% of healthy adults, whereas approximately 50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization. METHODOLOGY/PRINCIPAL FINDINGS: Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers). Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp.), with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter spp). In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004). CONCLUSIONS/SIGNIFICANCE: The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization

    Meningococcal Factor H Binding Proteins in Epidemic Strains from Africa: Implications for Vaccine Development

    Get PDF
    Epidemics of meningococcal meningitis are common in sub-Saharan Africa. Most are caused by encapsulated serogroup A strains, which rarely cause disease in industrialized countries. A serogroup A polysaccharide protein conjugate vaccine recently was introduced in some countries in sub-Saharan Africa. The antibodies induced, however, may allow replacement of serogroup A strains with serogroup W-135 or X strains, which also cause epidemics in this region. Protein antigens, such as factor H binding protein (fHbp), are promising for prevention of meningococcal serogroup B disease. These proteins also are present in strains with other capsular serogroups. Here we report investigation of the potential of fHbp vaccines for prevention of disease caused by serogroup A, W-135 and X strains from Africa. Four fHbp amino acid sequence variants accounted for 81% of the 106 African isolates studied. While there was little cross-protective activity by antibodies elicited in mice by recombinant fHbp vaccines from each of the four sequence variants, a prototype native outer membrane vesicle (NOMV) vaccine from a mutant with over-expressed fHbp elicited antibodies with broad protective activity. A NOMV vaccine has the potential to supplement coverage by the group A conjugate vaccine and help prevent emergence of disease caused by non-serogroup A strains
    • …
    corecore