15 research outputs found

    Bilateral myositis ossificans of the masseter muscle after chemoradiotherapy and critical illness neuropathy- report of a rare entity and review of literature

    Get PDF
    Myositis ossificans in the head and neck is a rare heterotropic bone formation within a muscle. Besides fibrodysplasia ossificans progressiva, traumatic and neurogenic forms are described in the literature

    Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection

    Get PDF
    © 2014 Gironès et al. Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.This work was supported by ‘‘Ministerio de Ciencia e Innovación’’ (SAF2010-17833); ‘‘Fondo de Investigaciones Sanitarias’’ (PS09/00538 and PI12/00289); ‘‘Red de Investigación de Centros de Enfermedades Tropicales’’ (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet);‘‘Universidad Autónoma de Madrid’’ and ‘‘Comunidad de Madrid’’ (CC08-UAM/SAL-4440/08); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD-2332) and ‘‘Fundación Ramón Areces’Peer Reviewe

    Remove, rotate, and reimplant: a novel technique for the management of exposed porous anophthalmic implants in eviscerated patients

    No full text
    PURPOSE: To describe and to evaluate a new and relatively easy technique for porous implant exposure repair. METHODS: Eleven patients with exposed porous orbital implants after evisceration were included in this study. Five patients with large exposures (diameter>7 mm) and six patients with small exposures of orbital implants (diameter<7 mm) that persisted despite posterior vaulting of the prosthesis and usage of antibiotics and steroids for more than 6 weeks, underwent revision surgery with the remove-rotate-reimplant technique (3R technique). Negative microbiological culture taken from the exposed socket surface before surgery was the major inclusion criterion. Five patients with insufficient conjunctival tissue also underwent additional mucosa or hard palate grafting of the defect in addition to the remove-rotate-reimplant procedure. RESULTS: Patients have been followed up for more than 18 months (ranging from 18–30 months). None of them received motility peg insertion after repair. Implant reexposure was detected in one patient during the follow-up period, which was managed by dermis fat grafting with implant removal. CONCLUSION: The remove-rotate-reimplant technique is an effective surgical method for repairing exposed porous anophthalmic implants after evisceration with a 90% success in this study. It avoids the removal of the implant from the sclera, which is a traumatic procedure that may lead to the tearing and loss of scleral tissue covering the implant. Saving the porous implant and scleral cover reduces the surgical time and cost
    corecore