1,043 research outputs found

    Azomethine and oxyazomethine derivatives of some main group elements

    Get PDF
    Not availabl

    Bandpass switching in a nonlinear optical loop mirror

    Get PDF
    A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band

    Intelligent integrated maintenance for wind power generation

    Get PDF
    A novel architecture and system for the provision of Reliability Centred Maintenance (RCM) for offshore wind power generation is presented. The architecture was developed by conducting a bottom-up analysis of the data required to support RCM within this specific industry, combined with a top-down analysis of the required maintenance functionality. The architecture and system consists of three integrated modules for Intelligent Condition Monitoring, Reliability and Maintenance Modelling, and Maintenance Scheduling that provide a scalable solution for performing dynamic, efficient and cost effective preventative maintenance management within this extremely demanding renewable energy generation sector. The system demonstrates for the first time, the integration of state-of-the-art advanced mathematical techniques: Random Forests, Dynamic Bayesian Networks, and Memetic Algorithms in the development of an intelligent autonomous solution. The results from the application of the intelligent integrated system illustrated the automated detection of faults within a wind farm consisting of over 100 turbines, the modelling and updating of the turbines’ survivability and creation of a hierarchy of maintenance actions, and the optimising of the maintenance schedule with a view to maximising the availability and revenue generation of the turbines

    Site-selective quantum correlations revealed by magnetic anisotropy in the tetramer system SeCuO3

    Get PDF
    We present the investigation of a monoclinic compound SeCuO3 using x-ray powder diffraction, magnetization, torque and electron-spin-resonance (ESR). Structurally based analysis suggests that SeCuO3 can be considered as a 3D network of tetramers. The values of intra-tetramer exchange interactions are extracted from the temperature dependence of the susceptibility and amount to ~200 K. The inter-tetramer coupling leads to the development of long-range antiferromagnetic order at TN = 8 K. An unusual temperature dependence of the effective g-tensors is observed, accompanied with a rotation of macroscopic magnetic axes. We explain this unique observation as due to site-selective quantum correlations

    Does fine sediment source as well as quantity affect salmonid embryo mortality and development?

    Get PDF
    Fine sediments are known to be an important cause of increased mortality in benthic spawning fish. To date, most of the research has focussed on the relationship between embryo mortality and the quantity of fine sediment accumulated in the egg pocket. However, recent evidence suggests a) that the source of fine sediment might also be important, and b) that fitness of surviving embryos post-hatch might also be impacted by the accumulation of fine sediments. In this paper, we report an experiment designed to simulate the incubation environment of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). During the experiment, the incubating embryos were exposed to different quantities of fine (< 63 ?m) sediment derived from four different sources; agricultural topsoils, damaged road verges, eroding river channel banks and tertiary level treated sewage. Results showed that mass and source are independently important for determining the mortality and fitness of alevin. Differences between species were observed, such that brown trout are less sensitive to mass and source of accumulated sediment. We demonstrate for the first time that sediment source is an additional control on the impact of fine sediment, and that this is primarily controlled by the organic matter content and oxygen consumption of the catchment source material

    Interactions between fine-grained sediment delivery, river bed deposition and salmonid spawning success

    Get PDF
    Salmonids clean river bed gravels to lay their eggs. However, during the incubation period fine sediment infiltrates the bed. This has been found to limit the success of salmonid spawning, as fine sediment reduces gravel permeability resulting in intra-gravel flow velocities and O2 concentrations decreasing. The success of salmonid spawning is therefore a function of the coincidence of fine sediment delivery and the development of the salmonid eggs. The presence of fine sediment also exerts sub-lethal effects on the rate of egg development with a negative feedback slowing and extending the incubation process meaning the eggs are in the gravels for longer and susceptible to more potential sediment delivery events. The SIDO (Sediment Intrusion and Dissolved Oxygen)-UK model is a physically-based numerical model which simulates the effect of fine sediment deposition on the abiotic characteristics of the salmonid redd, along with the consequences for egg development and survival. This model is used to investigate the interactions and feedbacks between the timing and concentrations of suspended sediment delivery events, and the deposition of fine sediment within the gravel bed, and the consequences of this on the rate of egg development and survival. The model simulations suggest that egg survival is highly sensitive to suspended sediment concentrations, particularly to changes in the supply rate of sand particles. The magnitude, frequency and specific timing of sediment delivery events effects egg survival rates. The modelling framework is also used to investigate the impact of the rate of gravel infilling by sediment

    Soliton switching using cascaded nonlinear-optical loop mirrors

    Get PDF
    We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics
    corecore