1,595 research outputs found

    Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance

    Get PDF
    A transfer matrix model of a luminescent down-shifter (LDS) layer, consisting of silicon nanocrystals (Si-NCs) embedded in a silicon oxide matrix, on a silicon solar cells is presented. To enhance the efficiency of the silicon solar cell, we propose using a SiO2/Si-NCs double layer stack, as an anti-reflection-coating (ARC) and as a LDS material. The optical characteristics of this stack have been simulated and optimized as a front surface coating. The cell performances have been simulated by means of a two-dimensional device simulator and compared with the performances of a reference silicon solar cell. We found a 6% relative enhancement of the energy conversion efficiency with respect to the reference cell. We demonstrate that this enhancement results from the lower reflectance and from the down-shifter effect of the Si-NCs activated coating stack

    Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in Na-Cl brackish waters of north-western Sardinia, Italy

    Get PDF
    Abstract. Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future

    Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval

    Get PDF
    New quadrature formulae are introduced for the computation of integrals over the whole positive semiaxis when the integrand has an oscillatory behavior with decaying envelope. The new formulae are derived by exponential fitting, and they represent a generalization of the usual Gauss-Laguerre formulae. Their weights and nodes depend on the frequency of oscillation in the integrand, and thus the accuracy is massively increased. Rules with one up to six nodes are treated with details. Numerical illustrations are also presented

    Stability theory of TASE-Runge-Kutta methods with inexact Jacobian

    Full text link
    This paper analyzes the stability of the class of Time-Accurate and Highly-Stable Explicit Runge-Kutta (TASE-RK) methods, introduced in 2021 by Bassenne et al. (J. Comput. Phys.) for the numerical solution of stiff Initial Value Problems (IVPs). Such numerical methods are easy to implement and require the solution of a limited number of linear systems per step, whose coefficient matrices involve the exact Jacobian JJ of the problem. To significantly reduce the computational cost of TASE-RK methods without altering their consistency properties, it is possible to replace JJ with a matrix AA (not necessarily tied to JJ) in their formulation, for instance fixed for a certain number of consecutive steps or even constant. However, the stability properties of TASE-RK methods strongly depend on this choice, and so far have been studied assuming A=JA=J. In this manuscript, we theoretically investigate the conditional and unconditional stability of TASE-RK methods by considering arbitrary AA. To this end, we first split the Jacobian as J=A+BJ=A+B. Then, through the use of stability diagrams and their connections with the field of values, we analyze both the case in which AA and BB are simultaneously diagonalizable and not. Numerical experiments, conducted on Partial Differential Equations (PDEs) arising from applications, show the correctness and utility of the theoretical results derived in the paper, as well as the good stability and efficiency of TASE-RK methods when AA is suitably chosen.Comment: 26 page

    SiPM and front-end electronics development for Cherenkov light detection

    Full text link
    The Italian Institute of Nuclear Physics (INFN) is involved in the development of a demonstrator for a SiPM-based camera for the Cherenkov Telescope Array (CTA) experiment, with a pixel size of 6×\times6 mm2^2. The camera houses about two thousands electronics channels and is both light and compact. In this framework, a R&D program for the development of SiPMs suitable for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different photosensors have been produced at Fondazione Bruno Kessler (FBK), with different micro-cell dimensions and fill factors, in different geometrical arrangements. At the same time, INFN is developing front-end electronics based on the waveform sampling technique optimized for the new NUV SiPM. Measurements on 1×\times1 mm2^2, 3×\times3 mm2^2, and 6×\times6 mm2^2 NUV SiPMs coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Economics of One Health: Costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna

    Get PDF
    Since 2013 in Emilia-Romagna, Italy, surveillance information generated in the public health and in the animal health sectors has been shared and used to guide public health interventions to mitigate the risk of West Nile virus (WNV) transmission via blood transfusion. The objective of the current study was to identify and estimate the costs and benefits associated with this One Health surveillance approach, and to compare it to an approach that does not integrate animal health information in blood donations safety policy (uni-sectoral scenario). Costs of human, animal, and entomological surveillance, sharing of information, and triggered interventions were estimated. Benefits were quantified as the averted costs of potential human cases of WNV neuroinvasive disease associated to infected blood transfusion. In the 2009–2015 period, the One Health approach was estimated to represent a cost saving of €160,921 compared to the uni-sectoral scenario. Blood donation screening was the main cost for both scenarios. The One Health approach further allowed savings of €1.21 million in terms of avoided tests on blood units. Benefits of the One Health approach due to short-term costs of hospitalization and compensation for transfusion-associated disease potentially avoided, were estimated to range from €0 to €2.98 million according to the probability of developing WNV neuroinvasive disease after receiving an infected blood transfusion
    • …
    corecore