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aDipartimento di Matematica, Università degli Studi di Salerno, Via Giovanni Paolo II
n. 132, I-84084 Fisciano (Sa), Italy

b“Horia Hulubei” National Institute of Physics and Nuclear Engineering, Department of
Theoretical Physics, P.O.Box MG-6, Bucharest, Romania

cAcademy of Romanian Scientists, 54 Splaiul Independenţei, 050094, Bucharest,
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Abstract

New quadrature formulae are introduced for the computation of integrals
over the whole positive semiaxis when the integrand has an oscillatory be-
havior with decaying envelope. The new formulae are derived by exponential
fitting, and they represent a generalization of the usual Gauss-Laguerre for-
mulae. Their weights and nodes depend on the frequency of oscillation in
the integrand, and thus the accuracy is massively increased. Rules with one
up to six nodes are treated with details. Numerical illustrations are also
presented.
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1. Introduction

The accurate computation of integrals of oscillatory functions over an
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infinite domain is needed in numerous applications in various branches of
physics, engineering, and economics, as for inscance in wave absorption and
quantum mechanics; see, e.g., [1],[2],[16],[18],[20],[22],[37]. The problem is
also on steady interest for mathematicians, see the recent contribution [6]
and references therein.
In this paper we consider the numerical computation of the integral

I =

∫ ∞
0

e−xf(x)dx, (1.1)

when the integrand f(x) is an oscillatory function of the form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx). (1.2)

The coefficients f1(x) and f2(x) are assumed smooth enough to be well ap-
proximated by polynomials.
We construct Gauss-Laguerre quadrature rules of the form

I '
N∑
k=1

wkf(xk), (1.3)

where the weights wk and the nodes xk, k = 1, 2, ..., N depend on the fre-
quency ω of function f(x). The new rules should be contrasted with the
classical Gauss-Laguerre rules [17] whose (constant) weights and nodes are
derived on the assumption that the whole f(x) is smooth enough to be well
approximated by polynomials. The classical rules actually represent the limit
case ω → 0 of the new ones.

To build up the new rules we use the exponential fitting (EF) approach,
which is a well established procedure for the construction of approximation
formulae tuned on functions of special forms; form (1.2) is one of these. For
a monograph on the EF approach see [27].
Looking back in the history, the first contributions which gradually led
to the formulation of what in the meantime became the EF approach are
rather old but for a long period it has been believed that this approach
is useful only for amending algorithms for ordinary differential equations,
[10, 11, 12, 13, 14, 15, 25, 35, 39]. The fact that the EF technique can be ap-
plied for many other operations, including numerical differentiation, quadra-
ture or interpolation, became clear much more recently, [24], and since then
an important number of contributions have been published in these new do-
mains. In particular, EF-based versions for numerical quadrature have been
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obtained in [24] for the Simpson rule, in [29, 31, 32] for the more general
Newton-Cotes rule, in [26, 34, 30, 38] for the Gauss-Legendre rule, and in
[3, 4, 5] for integral equations. However, it is important to underline that in
all these cases the quadrature interval is finite, and, more general, the def-
inition interval for f(x) is finite in all existing EF applications, irrespective
of area. Outside the EF technique, in [21, 28] the integral of an oscillatory
function over a finite domain has been computed by using an approach re-
lated to steepest descent methods. The case we treat in this paper, where
the integration interval is infinite, is completely new in the context of the EF
technique, except for some preliminary results on the same problem recently
reported in [9].
The spirit of our work is to adapt the classical Gauss-Laguerre quadrature
formulae to the case of integrals of oscillatory functions of the form (1.1).
The idea to adapt existing formulae to the computation of particular in-
tegrals over infinite intervals has been used also in the recent paper [36],
where the authors consider the steepest descent, extrapolation and sequence
transformation methods, and they adapt the three methods, by means of an
algorithmic refinement, to the computation of three particular semi-infinite
integrals, not necessarely with an oscillatory behaviour. A Filon-type ap-
proach for the computation of infinite range oscillatory integrals has been
considered in the paper [19], where a smoother variation of the weight is
accepted but the frequency has to increase with x. The computation of inte-
grals of oscillatory functions over infinite intervals has finally been considered
also in the recent work [33], where the idea is to transform the integral into a
non oscillatory one, in order to apply the classical Gauss-Laguerre quadrature
rules. On the contrary we use a direct approach, by modifying the quadrature
rules in order to directly accurately compute the oscillatory integral.

The paper is organized as follows. In Section 2 we present the basic theo-
retical ingredients for the construction of the new EF-based Gauss-Laguerre
quadrature rules, in Section 3 we come with details on the numerical compu-
tation of the weights and nodes of these rules, while in Section 4 numerical
experiments are carried out. Finally some conclusions are reported in Section
5. The paper also contains an Appendix where the properties of the ηm(Z)
functions, frequently used in the paper, are recalled.
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2. The exponentially-fitted Gauss-Laguerre quadrature rule

The classical Gauss-Laguerre quadrature rule [17] is of the form (1.3),
where the weights and the nodes are obtained by imposing that the rule is
exact on the functions

xn−1, n = 1, 2, ..., 2N.

By defining the functional

L[f(x), a] =

∫ ∞
0

e−xf(x)dx−
N∑
k=1

wkf(xk),

where a is a vector with 2N components which collects the weights and
the nodes, viz. a = [w1,w2, ..., wN , x1, x2, ..., xN ], the desired values of the
components of a are obtained by imposing the condition

L[xn−1, a] = 0, n = 1, 2, ..., 2N.

The expression of the error is (see Eq. (3.6.3) of [17])

eGL =
(N !)2

(2N)!
f (2N)(θ), θ ∈ ]0,+∞[ . (2.4)

The EF Gauss-Laguerre quadrature rule is instead obtained by imposing
that the formula is exact on the functions

xn−1e±µx, n = 1, 2, ..., N,

i.e. by imposing
L[xn−1e±µx, a] = 0, n = 1, 2, ..., N. (2.5)

Theorem 2.1. The weights and the nodes of the EF Gauss-Laguerre quadra-
ture rule are solution of the nonlinear system

N∑
k=1

wkx
2n−2
k ηn−2(x

2
kZ)− 2n−1(n− 1)!

(1− Z)n
= 0, n = 1, . . . , N

N∑
k=1

wkx
2n−1
k ηn−1(x

2
kZ)− 2n−1(n− 1)!

(1− Z)n
= 0, n = 1, . . . , N

, (2.6)

where Z = µ2 = −ω2.
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Proof: We follow the procedure introduced in [24]. Thus we compute

L[eµx, a] =
1

1− µ
−

N∑
k=1

wke
µxk , L[e−µx, a] =

1

1 + µ
−

N∑
k=1

wke
−µxk ,

and use these for expressing

G+(Z, a) =
1

2

[
L[eµx, a] + L[e−µx, a]

]
, G−(Z, a) =

1

2µ

[
L[eµx, a]− L[e−µx, a]

]
.

We obtain

G+(Z, a) =
1

1− Z
−

N∑
k=1

wkη−1(x
2
kZ), G−(Z, a) =

1

1− Z
−

N∑
k=1

wkxkη0(x
2
kZ).

Also important are the expressions of the successive derivatives of G+ and
G− with respect to Z. By using the differentiation properties of the ηm(Z)
functions (see Appendix) the following expressions result:

G+(m)

(Z, a) =
m!

(1− Z)m+1
− 1

2m

N∑
k=1

wkx
2m
k ηm−1(x

2
kZ),

G−
(m)

(Z, a) =
m!

(1− Z)m+1
− 1

2m

N∑
k=1

wkx
2m+1
k ηm(x2kZ).

(2.7)

Since, from [24], the nonlinear system (2.5) is equivalent to{
G+(n−1)

(Z, a) = 0

G−
(n−1)

(Z, a) = 0
, n = 1, 2, ..., N, (2.8)

then (2.6) immediately follows. 2

We observe that (2.6) represents a nonlinear system of dimension 2N
in the nodes and the weights, whose solution is a vector a depending on
Z = −ω2, i.e. on the frequency ω of oscillation:

a = a(ω) = [w1(ω), w2(ω), ..., wN(ω), x1(ω), x2(ω), ..., xN(ω)]. (2.9)

By setting ω = 0, we obtain the classical Gauss-Laguerre quadrature formu-
lae, in which the nodes x̄k := xk(0) and the weights w̄k := wk(0) are given
by

LN(x̄k) = 0, w̄k =
x̄k

(N + 1)2 [LN+1(x̄k)]
2 ,
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where LN(x) denotes the Laguerre polynomial of degree N .
As for the error of the EF Gauss-Laguerre quadrature rule, the direct ap-
plication of Eq. (3.57) of [27] for h = 1, µ = iω, Z = −ω2, K = −1 and
P = N − 1 gives the following expression for its leading term:

lteEF = T (a(ω))(D(2) + ω2)Nf(0), (2.10)

where D(2) = d2

dx2
and

T (a(ω)) =
G+(0, a(ω))

ω2N
=

1−
∑N

k=1wk(ω)

ω2N
. (2.11)

Remark 2.1. We have limω→0 T (a(ω)) = (N !)2/(2N)!, as it is normal be-
cause the new rule tends to the classical one in this limit.

Remark 2.2. The expression for the genuine error of the EF version is a
sum of two terms of form (2.10) but with different arguments in f , viz.:

eEF = T+(a(ω))(D(2)+ω2)Nf(θ+)+T−(a(ω))(D(2)+ω2)Nf(θ−), θ±(ω) ∈ ]0,+∞[

where T± which satisfy T+(a(ω)) + T−(a(ω)) = T (a(ω)) can be determined
numerically, see [7] for the theory. As also shown in [7], the two forms
(leading term and genuine expression) may predict slightly different rates for
the error variation when ω is increased. Yet, in both frames the error is
found to extinct down, in contrast to the classical rule where it increases as
ω2N . See also Sec.4 below.

3. Computation of weights and nodes

In this section we develop an algorithm for the computation of the weights
and the nodes of the EF Gauss-Laguerre quadrature rule.
We have to solve the nonlinear algebraic system (2.6). We will use an itera-
tion procedure whose first stage consists in a convenient split of this system
with 2N equations into two subsystems of N equations each. In the iteration
procedure the first subsystem will be used as a linear system for the weights
wk while the second as a nonlinear system for the nodes xk. Our procedure
is somehow related, but not similar, to that used for the EF Gauss-legendre
rule, [26].
Each equation in (2.6) contains products of form wkx

p
k and the idea of the
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splitting consists in collecting the equations with the biggest p in the linear
subsystem while all the others are retained in the nonlinear subsystem.
Specifically, by denoting s =

⌊
N
2

⌋
and r = N − s the linear and nonlinear

subsystems are
N∑
k=1

wkx
2n−2
k ηn−2(x

2
kZ)− 2n−1(n− 1)!

(1− Z)n
= 0, n = r + 1, . . . , N

N∑
k=1

wkx
2n−1
k ηn−1(x

2
kZ)− 2n−1(n− 1)!

(1− Z)n
= 0, n = s+ 1, . . . , N

.

(3.12)
and

N∑
k=1

wkx
2n−2
k ηn−2(x

2
kZ)− 2n−1(n− 1)!

(1− Z)n
= 0, n = 1, . . . , r,

N∑
k=1

wkx
2n−1
k ηn−1(x

2
kZ)− 2n−1(n− 1)!

(1− Z)n
= 0, n = 1, . . . , s,

. (3.13)

respectively. Remember that Z = −ω2.

Example 3.1. Let us consider the case N=1. Then the systems (3.12) and
(3.13) lead to: {

w1η−1(x
2
1Z)− 1

1−Z = 0

w1x1η0(x
2
1Z)− 1

1−Z = 0

i. e., {
w1η−1(−x21ω2) = 1

1+ω2

w1x1η0(−x21ω2) = 1
1+ω2

whose analytical solutions are:

x1(ω) =
arctan(ω)

ω
+
kπ

ω
, k ∈ Z,

w1(ω) =


1√

1 + ω2
, |k| even

− 1√
1 + ω2

, |k| odd
.

(3.14)
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We observe that when k = 0, the unique EF node x1(ω) = arctan(ω)
ω

∈
[−π/(2ω), π/(2ω)] tends to classic Gauss-Laguerre node x1 = 1 as ω goes
to zero. Also the EF weight w1(ω) = 1√

1+ω2 tends to classic Gauss-Laguerre
weight w1 = 1 as ω goes to zero.

Example 3.2. For N=3 the linear system (3.12) and the nonlinear system
(3.13) have the forms x41η1(x

2
1Z) x42η1(x

2
2Z) x43η1(x

2
3Z)

x31η1(x
2
1Z) x32η1(x

2
2Z) x33η1(x

2
3Z)

x51η2(x
2
1Z) x52η2(x

2
2Z) x53η2(x

2
3Z)

 w1

w2

w3

 =


8

(1−Z)3
2

(1−Z)2
8

(1−Z)3


and 

w1η−1(x
2
1Z) + w2η−1(x

2
2Z) + w3η−1(x

2
3Z)− 1

1−Z = 0

w1x
2
1η0(x

2
1Z) + w2x

2
2η0(x

2
2Z) + w3x

2
3η0(x

2
3Z)− 2

(1−Z)2 = 0

w1x1η0(x
2
1Z) + w2x2η0(x

2
2Z) + w3x3η0(x

2
3Z)− 1

1−Z = 0

respectively.

Remark 3.1. The linear system (3.12) in the weights w = (w1, . . . , wN)T

and the nonlinear system (3.13) in the nodes x = (x1, . . . , xN)T can be written
as

A(Z, x)w = b(Z), (3.15)

and as
F (Z,w, x) = D(Z, x)w − d(Z) = 0, (3.16)

respectively, where

Aij (Z, x) =


x
2(i+r−1)
j ηi+r−2(x

2
jZ), i = 1, . . . , s,

x2i−1j ηi−1(x
2
jZ), i = s+ 1, . . . , N,

j = 1, . . . , N,

(3.17)

bi(Z) =



2i+r−1(i+ r − 1)!

(1− Z)i+r
, i = 1, . . . , s,

2i−1(i− 1)!

(1− Z)i
, i = s+ 1, . . . , N,

,
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Dik(Z, x) =


x2i−2k ηi−2(x

2
kZ), i = 1, . . . , r,

x
2(i−r)−1
k ηi−r−1(x

2
kZ), i = r + 1, . . . , N,

, k = 1, . . . , N,

(3.18)

di(Z) =


2i−1(i− 1)!

(1− Z)i
, i = 1, . . . , r,

2i−r−1(i− r − 1)!

(1− Z)i−r
, i = r + 1, . . . , N.

(3.19)

The numerical solution of the nonlinear system (3.16) is carried out by
means of the Newton’s iterative method. On each iteration, the new, cor-
rected values of x, denoted by xnew, are determined in terms of the input
node values x by the formula

xnew = x+ ∆x.

Here the deviation ∆x is the solution of the linear system

B(Z,w, x)∆x = −D(Z, x)w + d(Z), (3.20)

where the matrix B denotes the Jacobian of F (Z,w, x) with respect to x, and
the matrix D and vector d are defined in (3.18) and (3.19), respectively. The
Jacobian matrix B can be computed by using the differentiation properties
of the ηm(Z) functions, as shown in the following theorem.

Theorem 3.1. The Jacobian matrix B of the Newton iterative method (3.20)
is

B(Z,w, x) = C(Z, x) · diag(w) +D(Z, x) · Jxw, (3.21)

where the matrix Jxw is computed by solving

A(Z, x) · Jxw = −JxA · diag(w). (3.22)

Here diag(w) is the diagonal matrix

diag(w) = (wiδij)i,j=1,...,N .
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Cik(Z, x) =



x2i−3k

[
(2i− 2)ηi−2(x

2
kZ) + x2kZηi−1(x

2
kZ)
]
,

i = 1, . . . , r,

x
2(i−r−1)
k

[
(2(i− r)− 1) ηi−r−1(x

2
kZ) + x2kZηi−r(x

2
kZ)
]
,

i = r + 1, . . . , N,
(3.23)

for k = 1, . . . , N

(JxA)ij =



x
2(i+r)−3
j

[
2(i+ r − 1)ηi+r−2(x

2
jZ) + x2jZηi+r−1(x

2
jZ)
]
,

i = 1, . . . , s,

x
2(i−1)
j

[
(2i− 1)ηi−1(x

2
jZ) + x2jZηi(x

2
jZ)
]

i = s+ 1, . . . , N,
(3.24)

for j = 1, . . . , N , and the matrices D and A are given by (3.17) and (3.18),
respectively.

Proof:
From (3.16), by observing that the element Dik of the matrix D(Z, x)

in (3.18) depends only on Z and on the variable xk, that is Dik(Z, x) =
Dik(Z, xk), the Jacobian matrix B can be computed as

Bij(Z,w, x) =
∂Fi(Z,w, x)

∂xj
=

∂

∂xj

[∑N
k=1wk(x)Dik(Z, xk)− di(Z)

]
=

=
N∑
k=1

∂wk
∂xj

Dik +
N∑
k=1

wk
∂Dik

∂xk
δk,j.

So we obtain

Bij(Z,w, x) =
N∑
k=1

∂wk
∂xj

Dik + wj
∂Dij

∂xj
. (3.25)

By defining the matrix Jxw as

Jxw =

(
∂wi
∂xj

)
i,j=1,...,N

,

and by observing that the matrix C(Z, x) defined in (3.23) satisfies

Cik =

(
∂Dik

∂xk

)
i,k=1,...,N

10



we can rewrite the Jacobian (3.25) as (3.21).
For the computation of the matrix Jxw, we start from the linear system

in (3.15). By definition of the matrix A(Z, x), we remind that the element
Aij depends only on Z and on the variable xj, that is Aij(Z, x) = Aij(Z, xj),
for i, j = 1, . . . , N , and the element bi depends only on Z, that is bi = bi(Z).
Then we make the derivative with respect to xj of the i-th equation of the
linear system (3.15), obtaining

0 =
∂bi
∂xj

=
∂

∂xj
(A · w)i =

∂

∂xj

[
N∑
k=1

Aik · wk

]
=

N∑
k=1

[
∂

∂xj

(
Aik · wk

)]
=

N∑
k=1

[
∂Aik
∂xj

· wk + Aik ·
∂wk
∂xj

]
=

N∑
k=1

[
∂Aik
∂xj

· δkj · wk
]

+
N∑
k=1

[
Aik ·

∂wk
∂xj

]
.

So, in matrix form, we have that

JxA · diag(w) + A · Jxw = 0,

which is equivalent to (3.22), where

JxA =

(
∂Aij
∂xj

)
i,j=1,...,N

,

which gives (3.24).
2

To summarize, each iteration of the Newton’s method, which takes the
vector x for input to compute correspondingly updated values for the vectors
of weights and of nodes, requires to:

• solve the linear system (3.15) to update the vector of weights w;

• solve the linear system (3.20) after computing the matrix Jxw from
(3.22) and the matrix B as in (3.21). Note that (3.22) for matrix
Jxw consists in N linear systems having the same coefficient matrix A
and different second hand side for each column. This is an important
ingredient for an efficient computation of the whole Jxw.

4. Numerical illustrations

In this section we give some technical details on how the effective numer-
ical computation of the weights and nodes of the new rules should be carried

11



out, and report on two numerical experiments in which the classical and the
new EF-based rules are compared for accuracy. The computations have been
done on a node with CPU Intel Xeon 6 core X5690 3,46GHz, belonging to
the E4 multi-GPU cluster of Mathematics Department of Salerno University.

4.1. EF Gauss-Laguerre formulae for N = 1, 2, ..., 6

As shown in Example 3.1, in the case N = 1 the weights and the nodes
can be computed directly; their expressions are given in (3.14). This no more
possible for biggerN such that for eachN ≥ 2 we use the numerical algorithm
described in the previous section, based on Newton’s iterative process. The
important issue is how the starting vector of nodes should be taken in order
to ensure a fast convergence of the iteration process. We opted for the idea
of taking a form inspired from (3.14): for each given N and ω we take the
initial approximation x∗k of the form

x∗k(ω) = x̄k
arctan(αkω)

αkω
, k = 1, . . . , N. (4.26)

Here x̄k are the nodes of the N -th degree Laguerre polynomial and αk are
suitable chosen constants determined after a long set of experimental inves-
tigations. The values of αk for N = 2, 3, 4, 5 and 6 are listed in Table 1. The
number of iterations needed in order to obtain an accuracy of 10−14 is around
10 in all cases.

It is also worth noticing that in our procedure starting data are required
only for the nodes, in contrast to the iteration procedure developed in [26]
for the EF Gauss-Legendre rule, where starting values were required also for
the weights.

The variation with ω of the weights and of the nodes for N = 1, 2, 3, 4, 5
and 6, and for ω between 0 and 50, are presented in Figs. 1, 2 and 3. We
observe that in all these cases the weights are inside [0, 1]. Moreover the
weights and the nodes tend to zero as ω increases. Due to the oscillatory
behaviour of η functions for negative Z = −ω2, different solutions may exist
also for N ≥ 2, as happens in Example 3.1 for N = 1. We choose the initial
approximation (4.26) in such a way that all the coefficients of the EF Gauss-
Laguerre formulae tend to classical ones when ω goes to zero, as shown in
Figures 1, 2 and 3. However, the existence of further solutions may have
only a minor influence on the accuracy of the new quadrature rule. As a
matter of fact, if we consider the expression of T (a(ω)) in (2.11), we observe

12



Table 1: Values of αi for N = 2, 3, 4, 5, 6.

N ω α1 α2 α3 α4 α5 α6

2 0 ≤ ω ≤ 50 2/3 4/3

3 0 ≤ ω ≤ 50 0.500 1.000 1.500

4 0 ≤ ω ≤ 50 0.500 0.750 1.085 1.565

0 ≤ ω < 6 0.465 0.670 0.905 1.205 1.600

5 6 ≤ ω < 15 0.465 0.670 0.905 1.205 1.610

15 ≤ ω ≤ 50 0.465 0.670 0.905 1.205 1.620

0 ≤ ω < 3.5 0.443 0.560 0.735 0.940 1.210 1.600

3.5 ≤ ω < 7.5 0.443 0.585 0.765 0.975 1.245 1.625

6 7.5 ≤ ω < 10 0.443 0.585 0.770 0.995 1.265 1.640

10 ≤ ω < 15 0.443 0.600 0.788 1.005 1.275 1.650

15 ≤ ω ≤ 50 0.443 0.605 0.795 1.020 1.290 1.665

that it shows a decrease like ω−2N . Any different values of xk and wk, if
they exist, will affect only the numerator in T (a(ω)), while the decrease of
T (a(ω)) as ω−2N is untouched. As regard the accuracy in the computation
of weigths and nodes, it is worth mentioning that the condition number of
Jacobian matrix B in (3.20) increases with ω and N . Therefore for values of
ω outside the considered range [0, 50] and for N > 6, the algorithm can show
instability, see for instance [26].

4.2. Numerical tests

Test case 1. We consider the function

f(x) = x cos(ωx) + x sin(ωx), (4.27)

for which we have ∫ ∞
0

e−xf(x)dx =
1 + 2ω − ω2

(1 + ω2)2
. (4.28)

In Table 2 we compare the absolute errors |Iexact−Icomput| of the results from
classical and EF-based Gauss-Laguerre rules for N = 3, 4 and various values
of ω. We observe that the error from classical version is within the round-off
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Figure 1: Variation with ω of the nodes and the weights of the N -point EF Gauss-
Laguerre rule. (a) N = 1: node x1; (b) N = 1: weight w1; (c) N = 2: nodes x1
(dashed), x2 (solid); (d) N = 2: weights w1 (dashed), w2 (solid).
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Figure 2: Variation with ω of the nodes and the weights of the N -point EF Gauss-
Laguerre rule. (a) N = 3: nodes x1 (dashed) ≤ x2 ≤ x3 (solid); (b) N = 3: weights
w1 (dashed) ≥ w2 ≥ w3 (solid); (c) N = 4: nodes x1 (dashed) ≤ x2 ≤ x3 ≤ x4
(solid); (d) N = 4: weights w1 (dashed) ≥ w2 ≥ w3 ≥ w4 (solid).
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Figure 3: Variation with ω of the nodes and the weights of the N -point EF Gauss-
Laguerre rule. (a) N = 5: nodes x1 (dashed) ≤ x2 ≤ x3 ≤ x4 ≤ x5 (solid); (c)
N = 5: weights w1 (dashed), w2 (solid) ≥ w3 ≥ w4 ≥ w5; (c) N = 6: nodes x1
(dashed) ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 (solid); (d) N = 6: weights w1 (dashed), w2

(solid) ≥ w3 ≥ w4 ≥ w5 ≥ w6.
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margin for ω = 0, but abnormally big for the other values. The result is just
normal because this version is exact if f(x) is a polynomial of the (2N−1)-th
degree at most, and this holds true only when ω = 0 (where it becomes a first
degree polynomial, actually). For contrast, the EF-based version is affected
only by round-off error for all ω. This is also normal because for this test
function the new rule is exact irrespective of ω.

N rules ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50

3 Classic 1.11e-16 1.22e+00 6.04e-01 7.77e-01 1.23e+00 8.62e-01

EF 1.11e-16 4.51e-17 1.64e-17 4.98e-18 6.18e-18 5.69e-18

4 Classic 2.24e-12 4.95e-01 6.74e-01 2.62e-01 1.13e+00 8.14e-02

EF 2.24e-12 3.58e-15 1.35e-16 2.09e-16 2.50e-17 1.46e-16

Table 2: Error produced by the EF Gauss-Laguerre rule with N = 3, 4 on problem
(4.27).

Test case 2. The function

f(x) = cos[(ω + 1)x] (4.29)

is of form (1.2) with f1(x) = sin(x) and f2(x) = cos(x), and∫ ∞
0

e−xf(x)dx =
1

1 + (1 + ω)2
. (4.30)

In Tables 3 and 4 we report the results obtained by the classical and the EF
rule with N = 5 and N = 6 for different values of ω. The improvement in
accuracy with the new rule is impressive. For a better insight into the things,
in Fig. 4 we plot the variation with ω of the errors from the two rules. The
behaviors of the two errors confirm what we qualitatively expect on the basis
of Eqs.(2.4) and (2.10). Indeed, for the classical rule the error is given by
Eq.(2.4) which is a product of a constant and f (2N). For functions of form
(1.2), f (2N) will contain a term with ω2N and therefore, when ω is increased,
the error is also expected to increase.

For the EF Gauss-Laguerre rule the error is given by Eq.(2.10). Here the
front factor has the classical value when ω = 0 but it tends to behave like
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1/ω2N when ω is increased; this is because the sum of the weights in the

numerator tends to zero for big ω. The other factor, i.e.
(
ω2 +D(2)

)N
f ,

increases only as ωN so that, altogether, at large ω the error decreases as
ω−N , a remarkable fact, indeed. This also suggests that the error decrease is
faster and faster when N is increased. This property is also nicely confirmed
in Fig. 4.

N = 5 ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50

Classic 5.41e-04 9.32e-01 3.88e-01 2.30e-01 1.05e-01 3.52e-02

EF 5.41e-04 2.10e-06 6.04e-08 6.39e-09 1.24e-09 3.44e-10

Table 3: Error produced by the five-point Gauss-Laguerre quadrature rule on
problem (4.29).

N = 6 ω = 0 ω = 10 ω = 20 ω = 30 ω = 40 ω = 50

Classic 2.62e-04 1.70e-02 5.04e-01 6.49e-01 5.34e-01 1.00e-01

EF 2.62e-04 9.96e-07 1.03e-08 6.47e-10 9.35e-11 3.16e-11

Table 4: Error produced by the six-point Gauss-Laguerre quadrature rule on
problem (4.29).

5. Conclusions

We constructed a new class of EF Gauss-Laguerre rules for the computa-
tion of integrals of oscillating functions over infinite intervals. We developed
an algorithm for the computation of the weights and the nodes and demon-
strated the massive improvement in accuracy provided by the new formulae
when the frequency of oscillation increases.

Acknowledgement One of the authors (L.Gr.I.) has been partially sup-
ported by the project PN-II-ID-PCE-2011-3-0092 of the Romanian Ministry
of Education and Research.
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Figure 4: The ω dependence of the errors produced by classic (solid) and EF
(dashed) Gauss-Laguerre quadrature rule for N = 5 (a) and N = 6 (b).

Appendix

The set of functions ηm(Z), m = −1, 0, 1, 2, . . . has been originally intro-
duced in [23] in the context of CP methods for the Schrödinger equation.
The functions ηm(Z) with m = −1, 0 are first defined by some formulae, viz.:

η−1(Z) =


cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0

, η0(Z) =


sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0
(A.1)

and those with m > 0 are further generated by recurrence

ηm(Z) =
1

Z
[ηm−2(Z)− (2m− 1)ηm−1(Z)], m = 1, 2, 3, . . . (A.2)

if Z 6= 0, and by following values at Z = 0:

ηm(0) =
1

(2m+ 1)!!
, m = 1, 2, 3, . . . (A.3)

The differentiation of these functions is of direct concern for this paper. The
rule is

η′m(Z) =
1

2
ηm+1(Z) , m = −1, 0, 1, 2, 3, . . . (A.4)

For more details on these functions see [8, 27] or the Appendix of [24].
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