1,248 research outputs found

    Hydrothermal Au mineralisation caused by fluid decompression and cooling in dilatational cavities

    Get PDF
    It has been demonstrated that numerous hydrothermal mineralised (Au) quartz veins are related to seismic faulting (Wilkinson and Johnston, 1996; Weatherly and Henley, 2013). Dilatational cavities created during seismic faulting will result in (1) rapid fluid flow from the host rock into the cavities and (2) instantaneous fluid decompression under near-adiabatic and near-isenthalpic conditions (Fig. 1). Adiabatic-isenthalpic decompression of the fluid can either result in fluid heating or cooling (Fig. 1). Calculations demonstrate that for an initial lithostatic fluid pressures of 3-4 kbar and an initial fluid temperature ranging between 400 and 500°C, a CO2-bearing aqueous fluid has the ability to cool more than 100°C during decompression. The decrease in temperature will reduce the metal solubility largely due to its effect on the sulphur and oxygen fugacity

    Modelling of hydrothermal fluid compositions in the crust and upper mantle

    Get PDF
    Carbon-oxygen-hydrogen (COH) fluids are integral to the formation of many hydrothermal ore deposits (including orogenic gold, graphite), and diamond. Typically, a crustal/upper mantle COH fluid comprises H2O, CO2, CH4, H2, CO, C2H6, and O2. Crustal and upper mantle fluid compositions are constrained by pressure, temperature and redox state, and can be calculated if: (1) A reliable equation of state for fluid mixtures is available for the relevant pressure-temperature conditions is available for the calculation of fugacity coefficients; (2) Reliable thermodynamic variables including enthalpy, entropy and isobaric heat capacity can be obtained. Here, we used the equation of state by Zhang and Duan (2009) in conjunction with the NIST reference dataset to develop a user-friendly Excel spread sheet that allows the calculation of fluid compositions for a pressure-temperature range of > 0.5 kbar and 300-1500°C, respectively. Data manipulation and modelling was achieved with a combination of VBA, Python and SQL scripting and allowed us to validate the model calculations in the Excel spread sheet. Here, we used the equation of state by Zhang and Duan (2009) in conjunction with the NIST reference dataset to develop a user-friendly Excel spread sheet that allows the calculation of fluid compositions for a pressure-temperature range of > 0.5 kbar and 300-1500°C, respectively. Data manipulation and modelling was achieved with a combination of VBA, Python and SQL scripting and allowed us to validate the model calculations in the Excel spread sheet

    Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel

    Full text link
    We investigate the possibility that the late acceleration observed in the rate of expansion of the universe is due to vacuum quantum effects arising in curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM), or vacuum metamorphosis, cosmological model of Parker and Raval is revisited and improved. We show, by means of a manifestly nonperturbative approach, how the infrared behavior of the propagator (related to the large-time asymptotic form of the heat kernel) of a free scalar field in curved spacetime causes the vacuum expectation value of its energy-momentum tensor to exhibit a resonance effect when the scalar curvature R of the spacetime reaches a particular value related to the mass of the field. we show that the back reaction caused by this resonance drives the universe through a transition to an accelerating expansion phase, very much in the same way as originally proposed by Parker and Raval. Our analysis includes higher derivatives that were neglected in the earlier analysis, and takes into account the possible runaway solutions that can follow from these higher-derivative terms. We find that the runaway solutions do not occur if the universe was described by the usual classical FRW solution prior to the growth of vacuum energy-density and negative pressure (i.e., vacuum metamorphosis) that causes the transition to an accelerating expansion of the universe in this theory.Comment: 33 pages, 3 figures. Submitted to Physical Review D15 (Dec 23, 2003). v2: 1 reference added. No other change

    Finite Word Length FIR Filter Design Using Integer Programming Over a Discrete Coefficient Space

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1109/TASSP.1982.1163925Published in: IEEE Transactions on Acoustics, Speech, and Signal Processing (Volume: 30 , Issue: 4 , Aug 1982)It is demonstrated that the improvement achieved by using integer programming over simple coefficient rounding in the design of finite impulse response (FIR) filters with discrete coefficients is most significant when the discrete coefficient space is the powers-of-two space or when a specification is to be met with a given coefficient word length by increasing the filter length. Both minimax and least square error criteria are considered

    Coupled oscillators as models of phantom and scalar field cosmologies

    Full text link
    We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature, and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model.Comment: 18 pages, LaTeX, to appear in Physical Review

    Cosmology with a long range repulsive force

    Get PDF
    We consider a class of cosmological models in which the universe is filled with a (non-electric) charge density that repels itself by means of a force carried by a vector boson with a tiny mass. When the vector's mass depends upon other fields, the repulsive interaction gives rise to an electromagnetic barrier which prevents these fields from driving the mass to zero. This can modify the cosmology dramatically. We present a very simple realization of this idea in which the vector's mass arises from a scalar field. The electromagnetic barrier prevents this field from rolling down its potential and thereby leads to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD). 3 new figures, extended discussion of observational consequence

    Time-distance analysis of the emerging active region NOAA 10790

    Get PDF
    We investigate the emergence of Active Region NOAA 10790 by means of time – distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic-flux and thus obtain a provisional estimate of the speed of emergence of around 1 km s−1

    Superinflation, quintessence, and nonsingular cosmologies

    Get PDF
    The dynamics of a universe dominated by a self-interacting nonminimally coupled scalar field are considered. The structure of the phase space and complete phase portraits are given. New dynamical behaviors include superinflation (H˙>0\dot{H}>0), avoidance of big bang singularities through classical birth of the universe, and spontaneous entry into and exit from inflation. This model is promising for describing quintessence as a nonminimally coupled scalar field.Comment: 4 pages, 2 figure
    • 

    corecore