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precision  elsewhere. The resulting MSE was computed based 
upon1500  outputs in  each case, and  is  compared to MSEROM 
and MSEROM in  Table 11. The norm 11 G (Iz was computed us- 
ing  a  formula from [3 ] .  To determine  the accuracy of (4), the 
filters  were  simulated  with B = 20 for all  word  lengths.  The 
resulting MSE is compared to  MSETOT in  the last two columns 
in  Table 11. 

The MSE’s in Table I1 are  proportional to 2-2B, so to com- 
pare the predicted  error  with the observed error  in  units of bits, 
one should compute 3 logz (-) of the values in  the table. Per- 
forming  this computation  mentally, we see that  the predicted 
MSE’s are  generally  within  a small fraction of one  bit of the 
observed. The greatest  departure of predicted  error  from that 
observed is onlyabout one  bit. In addition, it is seen that 
MSEROM and MSEROM are about equally  good  predictors 
o f h e  error  due to finite  word  length ROM. Therefore, 
MSEROM, which  is  easier to  compute, will be preferable in 
practice. 
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Finite Word Length FIR Filter  Design 
Using  Integer  Programming Over a 

Discrete  Coefficient Space 

YONG  CHING LIM, SYDNEY R. PARKER, 
AND A. G.  CONSTANTINIDES 

Abstract-It is demonstrated that  the improvement achieved by using 
integer  programming over simple  coefficient  rounding  in the design of 
finite  impulse  response (FIR) filters  with  discrete  coefficients  is  most 
significant when the discrete  coefficient  space is the powers-of-two 
space or when a specification  is to  be  met with  a given coefficient 
word length by increasing the fiiter  length. Both minimax and least 
square  error  criteria are considered. 

In a recent  correspondence, Munson [ 1 ] has  indicated  that 
the design of finite  word  length  finite  impulse  response (FIR) 
digital  filters using rounded coefficient values is optimalAfor 
both  a minimum  time  domain  error  norm,  maxJY, - Y,l, 
and  a minimum  mean-square  error norm, E(Y,  - Y,)z where 
Y, is the  output of an  infinite  precision  coefficient version of 
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Fig. 1. A comparison  between  integer linear programming designs and 
simple  coefficient  rounding designs, using minimax  criterion. The 
coefficient space is the  nonuniformly  distributed  powers-of-two 
space. 

the  FIR  filter and Y, is the  output of the  finite precision 
coefficient  version.  Although the  optimality criteria  discussed 
in [ 1 ] are  useful for  certain applications,  in  many cases we are 
more  concerned  with  optimality in the  frequency domain, 
using a  peak  weighted  error norm given by 

A 

where &(a) is the  finite precision  coefficient  filter  frequency 
response, M(o) is a  weighting function, and H ( o )  is the de- 
sired  frequency  response.  The  minimization  of  (1),  subject t o  
discrete  constraints  in the filter  coefficient  values,  is an  integer 
linear  programming  problem.  It  can be shown that  the mini- 
mization of E(d ,  - Y,)*, where d, is the desired output, may 
be achieved by minimizing 

where W(w) is a  weighting function equal to  the  input signal 
frequency  power  spectrum.  The  minimization  of ( 2 ) ,  subject 
to  discrete  constraints in the  filter  coefficient  values, is an 
integer  quadratic  programming  problem.  Integer  linear  pro- 
gramming and integer  quadratic  programming  are  both  capable 
of producing optimum  finite word  length designs, but are 
computationally  extremely  expensive.  Hence,  integer  program- 
ming are to be used only  when  their  effects  are  significant. 
From  our experience  with  a  large number  of designs, we have 
arrived at  the conclusion that integer  programming is most 
desirable for  the following two cases. 

Case I: Integer  programming is particularly  useful  when the 
space of allowable  discrete  coefficient  values  is  nonuniformly 
distributed,  such as the powers-of-two  space. Fig. 1 shows  a 
comparison of 14 low-pass filters, seven of which  are designed 
using integer  linear  programming, while the remaining seven 
are  obtained by rounding  the coefficient  values of  the cor- 
responding  infinite  word  length designs. The passband and 
stopband have the same  ripple  weighting and  the normalized 
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Fig. 2. A comparison between integer linear programming designs and 
simple Coefficient rounding designs,  using minimax criterion. The 
coefficient space is the uniformly distributed finite wordlength 
space. The coefficient word length is ten  bits, including the sign bit. 
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Fig. 3. A comparison between integer quadratic programming designs 
and simple coefficient rounding designs,  using a least square criterion. 
The coefficient space is the nonuniformly distributed powers-of-two 
space. 

cutoff frequencies are 0.1 and  0.2, respectively. 6 is the peak 
weighted ripple. The passband gain, denoted by b ,  is fixed 
at  the mean value of the passband ripple subject to  the  con- 
straint 0.9 < b < 1.1. The normalized  peak weighted ripple 
6 / b  is used as the performance measure criterion. Each of 
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Fig. 4. A comparison between integer quadratic programming designs 
and simple coefficient rounding designs  using least square criterion. 
The coefficient space  is the uniformly distributed  finite word length 
space. The coefficient word length is 14 bits, including the sign bit. 

the coefficient values h(n)  is expressed as a sum  or difference 
of two powers of two, i.e., 

h(n)  = Si(n) x 2g'(") 
2 

( 3 )  
i = l  

where Si (n)  = - 1, 0, 1 and  gi(n) is an integer > -10. 
In Fig. 1,  for filter  length N =  32, the integer  programming 

design is 18 dB better  than  that  obtained  by rounding the 
infinite word length design. 

Fig. 2 shows a  comparison of another  14 low-pass filters 
with the same  specifications as above. Each coefficient 
value is represented by  ten binary  bits,  including the sign 
bit. Comparing the results of  Figs. 1  and 2, we note  that 
the  improvement achieved by integer  linear  programming 
for  the uniformly  distributed  finite word length  coefficient 
space is less impressive when compared to  that  for  the  non- 
uniformly distributed powers-of-two space. The  computer 
time required for each of the above designs, using a simplex- 
based integer  programming program, ranges from several 
seconds to  several hundred seconds on  an IBM 3033 computer. 

Fig. 3 shows  a  comparison of 14 bandpass  filters, seven of 
which are designed using integer quadratic programming, while 
the remaining seven are  obtained  by  rounding  the coefficient 
values of the corresponding infinite word  length designs. The 
specifications in normalized frequency are 

band 1 : H(w) = 0 
W ( W )  = 1 
band edges = 0 and 0.1 

band 2: H(w) = 1 
W ( 0 )  = 10 
band edges = 0.1 5 and 0.3 

band 3: H(o) = 0 
W(0) = 1 
band edges = 0.35 and 0.5. 
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Fig. 5. A CCITT specification. The minimum length linear phase  filter 

meeting this set of specifications has length N = 35. 

The coefficient grid is the same as (3). In Fig. 3, it can be seen 
the  error measure using quadratic programming is always re- 
duced  as the filter length is increased. If the discrete coeffi- 
cient values are obtained  by simple coefficient rounding, 
there is no guarantee that  the  error measure will not increase 
with increasing filter length. This fact can  also be observed 
in Fig. 2 .  

Fig. 4 shows  a  comparison of ten filters. The specifications 
are given in (4). Each coefficient value is represented by 14 
binary bits, including the sign bit. Comparing the results in 
Figs. 3 and 4, we note  that  the improvement achieved by 
integer quadratic programming for  the uniformly distributed 
finite word length coefficient space is less impressive when 
compared to  that of the  nonuniformly distributed powers 
of two. 

The  computer  time required to design the filter of length 
N =  95 was 10 s on an IBM 3033 computer, using a special- 
purpose  program  recently developed for high-order  discrete 
coefficient FIR filter designs [ 21 . 

Case 2: Integer  programming is very useful when there is 
a frequency response  specification to  be  met with  a given 
tolerance  limit using a  fixed  coefficient word length. In this 
type of design problem, the only variable is the  filter length. 
Since simple coefficient rounding does not guarantee that 
the higher order  filter will be  at least  as  good as a lower  order 
one,  the chance of meeting  a given set of  specifications for a 
given word length by increasing the  filter length is sometimes 
remote. However, integer  programming will produce a design 
(if there is one) meeting the given set of specifications. Fig. 5 
shows  an infinite word length FIR linear  phase  filter with a 
minimum length of N =  35, meeting  a pulse code  modulation 
(PCM) channel CCITT specification.  Imposing an 8-bit  con- 

m 
Q -. 

F i l t e r   l e n g t h  , N = 38 
Passband ga in  = 1.052 x Z7 
Impulse  response 

h( 0) = 1 = h(37) 
h(  1) = 1 = h(36) 
h( 2 )  = 0 = h(35) 
h( 3) = -1 = h(34) 
h( 4)  = - 2  = h(33) 
h( 5 )  = -2 = h(32) 
h( 6)  = 0 = h(31) 
h(  7) = 1 = h(30) 
h( 8) = 3 = h(29) 
h(  9) = 3 = h(28) 

1 

h(10) = 1 = h(27) 
h ( l 1 )  = -3 = h(26) 
h(12) = -6 = h(25) 
h(13) = -6 = h(24) 
h(14) = -3 = h(Z3) 
h(15) = 5 = h(22) 
h(16) = 16 = h(21) 
h(17) = 26 = h(20) 

h(18) = 32 = h(19) 

- - I n f i n i t e   p r e c i s i o n   c o e f f i c i e n t  
value 
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Fig. 6 .  A filter designed  using integer linear programming with 8-bit 

coefficient value (including sign bit) meeting the specifications of 
Fig. 5. 

straint on the coefficient word length,  the minimum length 
filter which meets the specifications of Fig. 5 using integer 
linear  programming is N = 38. Its  frequency response is shown 
in Fig. 6. 

The coefficient values of the  finite word length filter ob- 
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F i l t e r  l eng th  , N = 45 
Passband gain = 0.9916 x Z7 
Impulse response 

h (  0) = -1 = h(44)  h(12) = 3 = h(32) 
h( 1) = -1 = h(43)  h(13) = 3 = h(31) 
h( 2) = 0 = h(42)  h(14) = 0 = h(30) 
h (  3 )  = 1 = h(41)  h(15) = -4 = h(29) 
h(  4) = 1 = h(40)  h(16) = -h = h(28) 
h(  5) = 1 = h(39)  h(17) = -6 = h(27) 
h( 6)  E 0 = h(38)  h(18) = 0 = h(26) 
h( 7 )  = -1 = h(27)  h(19) = 9 = h(25) 
h( 8) = - 2  = h(36) h(20) = 20 = h(24) 
h( 9) = -2 = h ( 3 5 )  h ( 2 1 )  = 29 = h(23) 
h(10) = 0 = h(34)  h(22) = 32 = h(22) 
h ( l 1 )  = 2 = h(33) 

Frequency / kHz , (fS=32kHz) 

(b) 

-1.0 f I 
I I I I I 

0 0.6 1.2 1.8 2.4 3.0 3.6 

Frequency / kHz , (fS=32kHz) 

(c) 
Fig. 7 .  A  filter  obtained by simple coefficient rounding. 

tained by simple  coefficient  rounding  depends on  the infinite 
word length  prototype.  There  are  an  infinite  number of infi- 
nite  word  length  filters  capable of meeting the specification of 
Fig. 5. Our  method of choosing the  infinite word  length 
prototype is as follows. For  any given filter  length, an infinite 

0096-3518/82/0800-0 

word  length  prototype is designed  using linear  programming 
to meet the given specification. The  coefficient values are 
then  rounded to their  nearest  discrete values and the fre- 
quency  response is examined. If the resulting  finite word 
length design fails the specification in  the  stopband,  but clears 
the  specification in the passband, then  another  infinite word 
length  prototype filter  with  a  smaller stopband ripple but a 
larger passband  ripple,  keeping the filter  length  constant, 
is designed (using  linear programming), and vice  versa. The 
band edges  of the  infinite word  length  prototype may also 
be  manipulated. Using the above method, over 100 infinite 
word  length  prototypes for filter  length <SO were designed, 
and  their  coefficient values  were rounded to their  nearest 
discrete values. None of the designs meets the specification 
of  Fig. 5. The best  result  obtained is one  with N = 45, which 
fails the specification very slightly in  the passband. Its fre- 
quency  response is shown  in Fig. 7. In Fig. 7, it appears as 
though  the passband edge of the infinite  precision  proto- 
type may  be  shifted to make  room  for  the passband  ripples. 
However, our  attempts to exploit  this  situation have not 
produced  useful  results. 
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A Note on Polynomial  Transform  Error  Analysis 

S. PRAKASH AND V. V. RAO 

Abstract-In this  correspondence,  a fixed-point error analysis is given 
for  polynomial transforms computed using two’s complement arithme- 
tic. The results are extended  for  computing the  mean-square  error of a 
two-dimensional discrete  Fourier  transform (DFT)  computed  by  poly- 
nomial transform  technique. Also, an earlier  result  derived by Nuss- 
baumer [ 11 for comparing the rms  error/rms  result of  the  polynomial 
transform  and the fast  Fourier  transform (FFT) has been  modified. 

I. INTRODUCTION 
Polynomial  transforms (PT’s) are  found to be computationally 

efficient for  computing  multidimensional  discrete  Fourier 
transforms (DFT’s), and single and multidimensional convolu- 
tions [ 11-[ 51. Since they are computed  without multiplica- 
tions,  a  radix-2 PT  can  be expected to have less roundoff 
error  than  the  corresponding  FFT. A fixed-point  error analysis 
of the polynomial  transform  has  been  included  in a recent 
paper [ 11 by  Nussbaumer.  Some work has also been  reported 
by these authors  on  error analysis of convolution using  PT 
technique [ 6 1. 

In [ 1  ] it is stated  that for fixed-point  implementation (one’s 
complement  or sign magnitude),  the  rms  errorlrms result of a 
radix-2  PT is 1.7 times less than  the  corresponding  FFT. But 
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