621 research outputs found

    Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze out

    Full text link
    We investigate the effect of early chemical freeze-out on radial flow, elliptic flow and HBT radii by using a fully three dimensional hydrodynamic model. When we take account of the early chemical freeze-out, the space-time evolution of temperature in the hadron phase is considerably different from the conventional model in which chemical equilibrium is always assumed. As a result, we find that radial and elliptic flows are suppressed and that the lifetime and the spatial size of the fluid are reduced. We analyze the p_t spectrum, the differential elliptic flow, and the HBT radii at the RHIC energy by using hydrodynamics with chemically non-equilibrium equation of state.Comment: One subsection and two figures adde

    Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution

    Full text link
    We study the multifractal moments of the current distribution in randomly diluted resistor networks near the percolation treshold. When an external current is applied between to terminals xx and x′x^\prime of the network, the llth multifractal moment scales as MI(l)(x,x′)∼∣x−x′∣ψl/νM_I^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent of the isotropic percolation universality class. By applying our concept of master operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of multifractal exponents {ψl}\{\psi_l \} for l≥0l \geq 0 to two-loop order. We find that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure

    Evidence of Final-State Suppression of High-p_T Hadrons in Au + Au Collisions Using d + Au Measurements at RHIC

    Full text link
    Transverse momentum spectra of charged hadrons with pT<{p_{T} <} 6 GeV/c have been measured near mid-rapidity (0.2 <η<< \eta < 1.4) by the PHOBOS experiment at RHIC in Au + Au and d + Au collisions at sNN=200GeV{\sqrt{s_{_{NN}}} = \rm {200 GeV}}. The spectra for different collision centralities are compared to p+pˉ{p + \bar{p}} collisions at the same energy. The resulting nuclear modification factor for central Au + Au collisions shows evidence of strong suppression of charged hadrons in the high-pTp_{T} region (>2{>2} GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pTp_{T} yields. These measurements suggest a large energy loss of the high-pTp_{T} particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions.Comment: 3 pages, 4 figures, International Europhysics Conference on High Energy Physics EPS (July 17th-23rd 2003) in Aachen, German

    The COSINE-100 liquid scintillator veto system

    No full text
    This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200 L of linear alkylbenzene-based liquid scintillator. The liquid scintillator tags between 65 and 75% of the internal 40K background in the 2–6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold

    Universal Behavior of Charged Particle Production in Heavy Ion Collisions

    Full text link
    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.Comment: 4 Pages, 5 Figures, contributed to the Proceedings of Quark Matter 2002, Nantes, France, 18-24 July 200

    Centrality Dependence of Charged Particle Multiplicity at Mid-Rapidity in Au+Au Collisions at sqrt(s_NN) = 130 GeV

    Full text link
    We present a measurement of the pseudorapidity density of primary charged particles near mid-rapidity in Au+Au collisions at sqrt(s_NN) = 130 GeV as a function of the number of participating nucleons. These results are compared to models in an attempt to discriminate between competing scenarios of particle production in heavy ion collisions.Comment: 5 pages, 4 figures, revtex (submitted to Phys. Rev. Letters

    Global Observations from PHOBOS

    Full text link
    Particle production in Au+Au collisions has been measured in the PHOBOS experiment at RHIC for a range of collision energies. Three empirical observations have emerged from this dataset which require theoretical examination. First, there is clear evidence of limiting fragmentation. Namely, particle production in central Au+Au collisions, when expressed as dN/dη′dN/d\eta' (η′≡η−ybeam\eta' \equiv \eta-y_{beam}), becomes energy independent at high energy for a broad region of η′\eta' around η′=0\eta'=0. This energy-independent region grows with energy, allowing only a limited region (if any) of longitudinal boost-invariance. Second, there is a striking similarity between particle production in e+e- and Au+Au collisions (scaled by the number of participating nucleon pairs). Both the total number of produced particles and the longitudinal distribution of produced particles are approximately the same in e+e- and in scaled Au+Au. This observation was not predicted and has not been explained. Finally, particle production has been found to scale approximately with the number of participating nucleon pairs for Npart>65N_{part}>65. This scaling occurs both for the total multiplicity and for high \pT particles (3 <\pT< 4.5 GeV/c).Comment: QM2002 plenary talk, 10 pages, 11 figure

    Recent Results from PHOBOS at RHIC

    Full text link
    The PHOBOS experiment at RHIC has recorded measurements for Au-Au collisions spanning nucleon-nucleon center-of-mass energies from 19.6 GeV to 200 GeV. Global observables such as elliptic flow and charged particle multiplicity provide important constraints on model predictions that characterize the state of matter produced in these collisions. The nearly 4 pi acceptance of the PHOBOS experiment provides excellent coverage for complete flow and multiplicity measurements. Results including beam energy and centrality dependencies are presented and compared to elementary systems.Comment: 4 pages, 4 figures, proceedings from PANIC02 in Osaka, Japa
    • …
    corecore