268 research outputs found

    Antemortem CSF Aβ42/Aβ40 ratio predicts Alzheimer's disease pathology better than Aβ42 in rapidly progressive dementias

    Get PDF
    Objective: Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF Aβ42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF Aβ42/Aβ40 ratio. We compared CSF Aβ42 and Aβ42/Aβ40 ratio as biomarkers predicting AD neuropathological changes in patients with a short interval between lumbar puncture and death. Methods: We measured CSF Aβ40 and Aβ42 and assessed AD pathology in 211 subjects with rapidly progressive dementia (RPD) and a definite postmortem diagnosis of Creutzfeldt-Jakob disease (n = 159), AD (n = 12), dementia with Lewy bodies (DLB, n = 4), AD/DLB mixed pathologies (n = 5), and various other pathologies (n = 31). Results: The score reflecting the severity of Aβ pathology showed a better correlation with ln(Aβ42/Aβ40) (R 2  = 0.506, β = −0.713, P < 0.001) than with ln(Aβ42) (R 2  = 0.206, β = −0.458, P < 0.001), which was confirmed after adjusting for covariates. Aβ42/Aβ40 ratio showed significantly higher accuracy than Aβ42 in the distinction between cases with or without AD pathology (AUC 0.818 ± 0.028 vs. 0.643 ± 0.039), especially in patients with Aβ42 levels ≤495 pg/mL (AUC 0.888 ± 0.032 vs. 0.518 ± 0.064). Using a cut-off value of 0.810, the analysis of Aβ42/Aβ40 ratio yielded 87.0% sensitivity, 88.2% specificity in the distinction between cases with an intermediate-high level of AD pathology and those with low level or no AD pathology. Interpretation: The present data support the use of CSF Aβ42/Aβ40 ratio as a biomarker of AD pathophysiology and noninvasive screener for Aβ pathology burden, and its introduction in the research diagnostic criteria for AD

    Human Prion Diseases in The Netherlands (1998–2009): Clinical, Genetic and Molecular Aspects

    Get PDF
    Prion diseases are rare and fatal neurodegenerative disorders that can be sporadic, inherited or acquired by infection. Based on a national surveillance program in the Netherlands we describe here the clinical, neuropathological, genetic and molecular characteristics of 162 patients with neuropathologically confirmed prion disease over a 12-year period (1998–2009). Since 1998, there has been a relatively stable mortality of Creutzfeldt-Jakob disease (CJD) in the Netherlands, ranging from 0.63 to 1.53 per million inhabitants per annum. Genetic analysis of the codon 129 methionine/valine (M/V) polymorphism in all patients with sporadic CJD (sCJD) showed a trend for under-representation of VV cases (7.0%), compared with sCJD cohorts in other Western countries, whereas the MV genotype was relatively over-represented (22,4%). Combined PrPSc and histopathological typing identified all sCJD subtypes known to date, except for the VV1 subtype. In particular, a “pure" phenotype was demonstrated in 60.1% of patients, whereas a mixed phenotype was detected in 39.9% of all sCJD cases. The relative excess of MV cases was largely accounted for by a relatively high incidence of the MV 2K subtype. Genetic analysis of the prion protein gene (PRNP) was performed in 161 patients and showed a mutation in 9 of them (5.6%), including one FFI and four GSS cases. Iatrogenic CJD was a rare phenomenon (3.1%), mainly associated with dura mater grafts. Three patients were diagnosed with new variant CJD (1.9%) and one with variably protease-sensitive prionopathy (VPSPr). Post-mortem examination revealed an alternative diagnosis in 156 patients, most commonly Alzheimer's disease (21.2%) or vascular causes of dementia (19.9%). The mortality rates of sCJD in the Netherlands are similar to those in other European countries, whereas iatrogenic and genetic cases are relatively rare. The unusual incidence of the VV2 sCJD subtype compared to that reported to date in other Western countries deserves further investigation

    The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins

    Get PDF
    Current evidence indicating a role of the human prion protein (PrP) in amyloid-beta (Aβ) formation or a synergistic effect between Aβ and prion pathology remains controversial. Conflicting results also concern the frequency of the association between the two protein misfolding disorders and the issue of whether the apolipoprotein E gene (APOE) and the prion protein gene (PRNP), the major modifiers of Aβ- and PrP-related pathologies, also have a pathogenic role in other proteinopathies, including tau neurofibrillary degeneration. Here, we thoroughly characterized the Alzheimer's disease/primary age-related tauopathy (AD/PART) spectrum in a series of 450 cases with definite sporadic or genetic Creutzfeldt-Jakob disease (CJD). Moreover, we analyzed: (i) the effect of variables known to affect CJD pathogenesis and the co-occurring Aβ- and tau-related pathologies; (II) the influence of APOE genotype on CJD pathology, and (III) the effect of AD/PART co-pathology on the clinical CJD phenotype. AD/PART characterized 74% of CJD brains, with 53.3% and 8.2% showing low or intermediate-high levels of AD pathology, and 12.4 and 11.8% definite or possible PART. There was no significant correlation between variables affecting CJD (i.e., disease subtype, prion strain, PRNP genotype) and those defining the AD/PART spectrum (i.e., ABC score, Thal phase, prevalence of CAA and Braak stage), and no difference in the distribution of APOE ε4 and ε2 genotypes among CJD subtypes. Moreover, AD/PART co-pathology did not significantly affect the clinical presentation of typical CJD, except for a tendency to increase the frequency of cognitive symptoms. Altogether, the present results seem to exclude an increased prevalence AD/PART co-pathology in sporadic and genetic CJD, and indicate that largely independent pathogenic mechanisms drive AD/PART and CJD pathology even when they coexist in the same brain

    Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob disease

    Get PDF
    In recent studies, the amyloid form of recombinant prion protein (PrP) encompassing residues 89–230 (rPrP 89-230) produced in vitro induced transmissible prion disease in mice. These studies showed that unlike “classical” PrPSc produced in vivo, the amyloid fibrils generated in vitro were more proteinase-K sensitive. Here we demonstrate that the amyloid form contains a proteinase K-resistant core composed only of residues 152/153–230 and 162–230. The PK-resistant fragments of the amyloid form are similar to those observed upon PK digestion of a minor subpopulation of PrPSc recently identified in patients with sporadic Creutzfeldt-Jakob disease (CJD). Remarkably, this core is sufficient for self-propagating activity in vitro and preserves a β-sheet-rich fibrillar structure. Full-length recombinant PrP 23-230, however, generates two subpopulations of amyloid in vitro: One is similar to the minor subpopulation of PrPSc, and the other to classical PrPSc. Since no cellular factors or templates were used for generation of the amyloid fibrils in vitro, we speculate that formation of the subpopulation of PrPSc with a short PK-resistant C-terminal region reflects an intrinsic property of PrP rather than the influence of cellular environments and/or cofactors. Our work significantly increases our understanding of the biochemical nature of prion infectious agents and provides a fundamental insight into the mechanisms of prions biogenesis

    Plasma and CSF Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: A Cross-Sectional and Longitudinal Study

    Get PDF
    Background: Neurofilament light chain (NfL) is a validated biofluid marker of neuroaxonal damage with great potential for monitoring patients with neurodegenerative diseases. We aimed to further validate the clinical utility of plasma (p) vs. CSF (c) NfL for distinguishing patients with Amyotrophic Lateral Sclerosis (ALS) from ALS mimics. We also assessed the association of biomarker values with clinical variables and survival and established the longitudinal changes of pNfL during the disease course. Methods: We studied 231 prospectively enrolled patients with suspected ALS who underwent a standardized protocol including neurological examination, electromyography, brain MRI, and lumbar puncture. Patients who received an alternative clinical diagnosis were considered ALS mimics. We classified the patients based on the disease progression rate (DPR) into fast (DPR > 1), intermediate (DPR 0.5–1), and slow progressors (DPR < 0.5). All patients were screened for the most frequent ALS-associated genes. Plasma and CSF samples were retrospectively analyzed; NfL concentrations were measured with the SIMOA platform using a commercial kit. Results: ALS patients (n = 171) showed significantly higher pNfL (p < 0.0001) and cNfL (p < 0.0001) values compared to ALS mimics (n = 60). Both cNfL and pNfL demonstrated a good diagnostic value in discriminating the two groups, although cNfL performed slightly better (cNfL: AUC 0.924 ± 0.022, sensitivity 86.8%, specificity 92.4; pNfL: AUC 0.873 ± 0.036, sensitivity 84.7%, specificity 83.3%). Fast progressors showed higher cNfL and pNfL as compared to intermediate (p = 0.026 and p = 0.001) and slow progressors (both p < 0.001). Accordingly, ALS patients with higher baseline cNfL and pNfL levels had a shorter survival (highest tertile of cNfL vs. lowest tertile, HR 4.58, p = 0.005; highest tertile of pNfL vs. lowest tertile, HR 2.59, p = 0.015). Moreover, there were positive associations between cNfL and pNfL levels and the number of body regions displaying UMN signs (rho = 0.325, p < 0.0001; rho = 0.308, p = 0.001). Finally, longitudinal analyses in 57 patients showed stable levels of pNfL during the disease course. Conclusion: Both cNfL and pNfL have excellent diagnostic and prognostic performance for symptomatic patients with ALS. The stable longitudinal trajectory of pNfL supports its use as a marker of drug effect in clinical trials

    Mineral-doped poly(L-lactide) acid scaffolds enriched with exosomes improve osteogenic commitment of human adipose-derived mesenchymal stem cells

    Get PDF
    Exosomes derived from mesenchymal stem cells are extracellular vesicles released to facilitate cell communication and function. Recently, polylactic acid (PLA), calcium silicates (CaSi), and dicalcium phosphate dihydrate (DCPD) have been used to produce bioresorbable functional mineral-doped porous scaffolds-through thermally induced phase separation technique, as materials for bone regeneration. The aim of this study was to investigate the effect of mineral-doped PLA-based porous scaffolds enriched with exosome vesicles (EVs) on osteogenic commitment of human adipose mesenchymal stem cells (hAD-MSCs). Two different mineral-doped scaffolds were produced: PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD. Scaffolds surface micromorphology was investigated by ESEM-EDX before and after 28 days immersion in simulated body fluid (HBSS). Exosomes were deposited on the surface of the scaffolds and the effect of exosome-enriched scaffolds on osteogenic commitment of hAD-MSCs cultured in proximity of the scaffolds has been evaluated by real time PCR. In addition, the biocompatibility was evaluated by direct-contact seeding hAD-MSCs on scaffolds surface-using MTT viability test. In both formulations, ESEM showed pores similar in shape (circular and elliptic) and size (from 10\u201330 \ub5m diameter). The porosity of the scaffolds decreased after 28 days immersion in simulated body fluid. Mineral-doped scaffolds showed a dynamic surface and created a suitable bone-forming microenvironment. The presence of the mineral fillers increased the osteogenic commitment of hAD-MSCs. Exosomes were easily entrapped on the surface of the scaffolds and their presence improved gene expression of major markers of osteogenesis such as collagen type I, osteopontin, osteonectin, osteocalcin. The experimental scaffolds enriched with exosomes, in particular PLA-10CaSi-10DCPD, increased the osteogenic commitment of MSCs. In conclusion, the enrichment of bioresorbable functional scaffolds with exosomes is confirmed as a potential strategy to improve bone regeneration procedures

    Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease:diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and A beta 42 levels

    Get PDF
    The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82\u201396%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-\u3b2 (A\u3b2) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median A\u3b242 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of A\u3b2 brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and A\u3b242 as markers of brain tauopathy and \u3b2-amyloidosis
    corecore