16 research outputs found

    Interconnecting Customer Data in E-Commerce and Social Network for Product Recommendations

    Get PDF
    We propose a novel answer for cross-webpage cold start item suggestion, which intends to prescribe items from online business sites to clients at informal communication destinations in "chilly begin" circumstances, an issue which has once in a while been investigated previously. A noteworthy test is the way to use information separated from long range interpersonal communication destinations for cross-site cool begin item proposal. We propose to utilize the connected clients crosswise over person to person communication locales and web based business sites (clients who have interpersonal interaction accounts and have made buys on web based business sites) as a scaffold to outline's long range informal communication highlights to another component portrayal for item suggestion

    The Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis

    Get PDF
    The sulfosugar sulfoquinovose (SQ) is produced by essentially all photosynthetic organisms on Earth and is metabolized by bacteria through the process of sulfoglycolysis. The sulfoglycolytic Embden-Meyerhof-Parnas pathway metabolizes SQ to produce dihydroxyacetone phosphate and sulfolactaldehyde and is analogous to the classical Embden-Meyerhof-Parnas glycolysis pathway for the metabolism of glucose-6-phosphate, though the former only provides one C3 fragment to central metabolism, with excretion of the other C3 fragment as dihydroxypropanesulfonate. Here, we report a comprehensive structural and biochemical analysis of the three core steps of sulfoglycolysis catalyzed by SQ isomerase, sulfofructose (SF) kinase, and sulfofructose-1-phosphate (SFP) aldolase. Our data show that despite the superficial similarity of this pathway to glycolysis, the sulfoglycolytic enzymes are specific for SQ metabolites and are not catalytically active on related metabolites from glycolytic pathways. This observation is rationalized by three-dimensional structures of each enzyme, which reveal the presence of conserved sulfonate binding pockets. We show that SQ isomerase acts preferentially on the ÎČ-anomer of SQ and reversibly produces both SF and sulforhamnose (SR), a previously unknown sugar that acts as a derepressor for the transcriptional repressor CsqR that regulates SQ-utilization. We also demonstrate that SF kinase is a key regulatory enzyme for the pathway that experiences complex modulation by the metabolites SQ, SLA, AMP, ADP, ATP, F6P, FBP, PEP, DHAP, and citrate, and we show that SFP aldolase reversibly synthesizes SFP. This body of work provides fresh insights into the mechanism, specificity, and regulation of sulfoglycolysis and has important implications for understanding how this biochemistry interfaces with central metabolism in prokaryotes to process this major repository of biogeochemical sulfur

    Anthropometric, biochemical, dietary, morbidity and well-being assessments in women and children in Indonesia, India and Senegal : A UKRI GCRF Action Against Stunting Hub protocol paper

    Get PDF
    HD-K and EF were responsible for the overall design, training and overseeing implementation of the research. UF, MKH, BK, BF, RM, RPullakhandam, RPalika, TD, SFR, SD, RPradeilles, SA, AW, JPW, PH and CH were involved in its design. UF, MKH, BK, BF, DY, DS, NLZ, TCA, RM, RPullakhandam, RPalika, TD, SFR, SKB KS, DPP, DY, SD, PL-S, BD, PM, SF, ID, AD, TDVI, FT, AD, SS, BMK and DTT implemented the research. HD-K and EF wrote the manuscript. All authors read, provided comments on and approved the final version of the manuscript.Peer reviewe

    Structural and biochemical insights into the function and evolution of sulfoquinovosidases

    Get PDF
    An estimated 10 billion tonnes of sulfoquinovose (SQ) are produced and degraded each year. Prokaryotic sulfoglycolytic pathways catabolize sulfoquinovose (SQ) liberated from plant sulfolipid, or its delipidated form α-d-sulfoquinovosyl glycerol (SQGro), through the action of a sulfoquinovosidase (SQase), but little is known about the capacity of SQ glycosides to support growth. Structural studies of the first reported SQase (Escherichia coli YihQ) have identified three conserved residues that are essential for substrate recognition, but crossover mutations exploring active-site residues of predicted SQases from other organisms have yielded inactive mutants casting doubt on bioinformatic functional assignment. Here, we show that SQGro can support the growth of E. coli on par with d-glucose, and that the E. coli SQase prefers the naturally occurring diastereomer of SQGro. A predicted, but divergent, SQase from Agrobacterium tumefaciens proved to have highly specific activity toward SQ glycosides, and structural, mutagenic, and bioinformatic analyses revealed the molecular coevolution of catalytically important amino acid pairs directly involved in substrate recognition, as well as structurally important pairs distal to the active site. Understanding the defining features of SQases empowers bioinformatic approaches for mapping sulfur metabolism in diverse microbial communities and sheds light on this poorly understood arm of the biosulfur cycle

    Discovery and characterization of a sulfoquinovose mutarotase using kinetic analysis at equilibrium by exchange spectroscopy

    Get PDF
    Bacterial sulfoglycolytic pathways catabolize sulfoquinovose (SQ), or glycosides thereof, to generate a three-carbon metabolite for primary cellular metabolism and a three-carbon sulfonate that is expelled from the cell. Sulfoglycolytic operons encoding an Embden–Meyerhof–Parnas-like or Entner–Doudoroff (ED)-like pathway harbor an uncharacterized gene (yihR in Escherichia coli; PpSQ1_00415 in Pseudomonas putida) that is up-regulated in the presence of SQ, has been annotated as an aldose-1-epimerase and which may encode an SQ mutarotase. Our sequence analyses and structural modeling confirmed that these proteins possess mutarotase-like active sites with conserved catalytic residues. We overexpressed the homolog from the sulfo-ED operon of Herbaspirillum seropedicaea (HsSQM) and used it to demonstrate SQ mutarotase activity for the first time. This was accomplished using nuclear magnetic resonance exchange spectroscopy, a method that allows the chemical exchange of magnetization between the two SQ anomers at equilibrium. HsSQM also catalyzed the mutarotation of various aldohexoses with an equatorial 2-hydroxy group, including D-galactose, D-glucose, D-glucose-6-phosphate (Glc-6-P), and D-glucuronic acid, but not D-mannose. HsSQM displayed only 5-fold selectivity in terms of efficiency (kcat/KM) for SQ versus the glycolysis intermediate Glc-6-P; however, its proficiency [kuncat/(kcat/KM)] for SQ was 17 000-fold better than for Glc-6-P, revealing that HsSQM preferentially stabilizes the SQ transition state

    Anthropometric, biochemical, dietary, morbidity and well-being assessments in women and children in Indonesia, India and Senegal: a UKRI GCRF Action Against Stunting Hub protocol paper.

    Get PDF
    INTRODUCTION: Child stunting has a complex aetiology, especially in the first 1000 days of life. Nutrition interventions alone have not produced expected impacts in reducing/preventing child stunting, indicating the importance of understanding the complex interplay between environmental, physiological and psychological factors influencing child nutritional status. This study will investigate maternal and child nutrition, health and well-being status and associated factors through the assessment of: (1) anthropometry, (2) biomarkers of nutrition and health status, (3) dietary intakes, (4) fetal growth and development, (5) infant morbidity, (6) infant and young child feeding (IYCF) and (7) perinatal maternal stress, depression and social support. METHODS: This study will be conducted in a prospective pregnancy cohort in India, Indonesia and Senegal. Pregnant women will be recruited in the second (Indonesia, Senegal) and third (India) trimester of pregnancy, and the mother and infant dyads followed until the infant is 24 months of age. During pregnancy, anthropometric measures will be taken, venous blood samples will be collected for biochemical assessment of nutrition and health status, dietary intakes will be assessed using a 4-pass-24-hour dietary recall method (MP24HR), fetal ultrasound for assessment of fetal growth. After birth, anthropometry measurements will be taken, venous blood samples will be collected, MP24HR will be conducted, infant morbidity and IYCF practices will be assessed and a sample of breastmilk will be collected for nutrient composition analyses. Perinatal maternal stress, depression, social support and hair cortisol levels (stress) will be measured. The results from this study will be integrated in an interdisciplinary analysis to examine factors influencing infant growth and inform global efforts in reducing child stunting. ETHICS AND DISSEMINATION: Ethical approval was granted by the Ethics Committee of the London School of Hygiene and Tropical Medicine (17915/RR/17513); National Institute of Nutrition (ICMR)-Ministry of Health and Family Welfare, Government of India (CR/04/I/2021); Health Research Ethics Committee, University of Indonesia and Cipto Mangunkusumo Hospital (KET-887/UN2.F1/ETIK/PPM.00.02/2019); and the ComitĂ© National d'Ethique pour la Recherche en SantĂ©, Senegal (Protocole SEN19/78); the Royal Veterinary College (URN SR2020-0197) and the International Livestock Research Institute Institutional Research Ethics Committee (ILRI-IREC2020-33). Results will be published in peer-reviewed journals and disseminated to policy-makers and participating communities

    Dynamic Structural Changes Accompany the Production of 2-Dihydroxypropanesulfonate by Sulfolactaldehyde Reductase

    No full text
    2,3-Dihydroxypropanesulfonate (DHPS) is a major sulfur species in the biosphere. One important route for the production of DHPS includes sulfoglycolytic catabolism of sulfoquinovose (SQ) through the Embden-Meyerhof-Parnas (sulfo-EMP) pathway. SQ is a sulfonated carbohydrate present in plant and cyanobacterial sulfolipids (sulfoquinovosyl diacylglyceride and its metabolites) and is biosynthesised globally at a rate of around 10 billion tonnes per annum. The final step in the bacterial sulfo-EMP pathway involves reduction of sulfolactaldehyde (SLA) to DHPS, catalysed by an NADH-dependent SLA reductase. On the basis of conserved sequence motifs, we assign SLA reductase to the ÎČ-hydroxyacid dehydrogenase (ÎČ-HAD) family, making it the first example of a ÎČ-HAD enzyme that acts on a sulfonic acid, rather than a carboxylic acid substrate. We report crystal structures of the SLA reductase YihU from E. coli K-12 in its apo and cofactor-bound states, as well as the ternary complex YihU‱NADH‱DHPS with the cofactor and product bound in the active site. Conformational flexibility observed in these structures, combined with kinetic studies, confirm a sequential mechanism and provide evidence for dynamic domain movements that occur during catalysis. The ternary complex structure reveals a conserved sulfonate pocket in SLA reductase that recognises the sulfonate oxygens through hydrogen bonding to Asn174, Ser178, and the backbone amide of Arg123, along with an ordered water molecule. This triad of residues distinguishes these enzymes from classical ÎČ-HADs that act on carboxylate substrates. A comparison of YihU crystal structures with close structural homologues within the ÎČ-HAD family highlights key differences in the overall domain organization and identifies a unique peptide sequence that is predictive of SLA reductase activity.<br /
    corecore