6,164 research outputs found

    Similarity laws of lunar and terrestrial volcanic flows

    Get PDF
    A mathematical model of a one dimensional, steady duct flow of a mixture of a gas and small solid particles (rock) was analyzed and applied to the lunar and the terrestrial volcanic flows under geometrically and dynamically similar conditions. Numerical results for the equilibrium two phase flows of lunar and terrestrial volcanoes under similar conditions are presented. The study indicates that: (1) the lunar crater is much larger than the corresponding terrestrial crater; (2) the exit velocity from the lunar volcanic flow may be higher than the lunar escape velocity but the exit velocity of terrestrial volcanic flow is much less than that of the lunar case; and (3) the thermal effects on the lunar volcanic flow are much larger than those of the terrestrial case

    Radiation Pressure Induced Instabilities in Laser Interferometric Detectors of Gravitational Waves

    Get PDF
    The large scale interferometric gravitational wave detectors consist of Fabry-Perot cavities operating at very high powers ranging from tens of kW to MW for next generations. The high powers may result in several nonlinear effects which would affect the performance of the detector. In this paper, we investigate the effects of radiation pressure, which tend to displace the mirrors from their resonant position resulting in the detuning of the cavity. We observe a remarkable effect, namely, that the freely hanging mirrors gain energy continuously and swing with increasing amplitude. It is found that the `time delay', that is, the time taken for the field to adjust to its instantaneous equilibrium value, when the mirrors are in motion, is responsible for this effect. This effect is likely to be important in the optimal operation of the full-scale interferometers such as VIRGO and LIGO.Comment: 27 pages, 11 figures, RevTex styl

    Optimising the directional sensitivity of LISA

    Get PDF
    It was shown in a previous work that the data combinations canceling laser frequency noise constitute a module - the module of syzygies. The cancellation of laser frequency noise is crucial for obtaining the requisite sensitivity for LISA. In this work we show how the sensitivity of LISA can be optimised for a monochromatic source - a compact binary - whose direction is known, by using appropriate data combinations in the module. A stationary source in the barycentric frame appears to move in the LISA frame and our strategy consists of "coherently tracking" the source by appropriately "switching" the data combinations so that they remain optimal at all times. Assuming that the polarisation of the source is not known, we average the signal over the polarisations. We find that the best statistic is the `network' statistic, in which case LISA can be construed of as two independent detectors. We compare our results with the Michelson combination, which has been used for obtaining the standard sensitivity curve for LISA, and with the observable obtained by optimally switching the three Michelson combinations. We find that for sources lying in the ecliptic plane the improvement in SNR increases from 34% at low frequencies to nearly 90% at around 20 mHz. Finally we present the signal-to-noise ratios for some known binaries in our galaxy. We also show that, if at low frequencies SNRs of both polarisations can be measured, the inclination angle of the plane of the orbit of the binary can be estimated.Comment: 16 pages, 8 figures, submitted to Phys Rev

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games

    The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast.

    Get PDF
    DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability

    The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects

    Full text link
    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 15%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material

    Improving the Sensitivity of LISA

    Get PDF
    It has been shown in the past, that the six Doppler data streams obtained LISA configuration can be combined by appropriately delaying the data streams for cancelling the laser frequency noise. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of shot, acceleration noises. A rigorous and systematic formalism using the techniques of computational commutative algebra was developed which generates all the data combinations cancelling the laser frequency noise. The relevant data combinations form a first module of syzygies. In this paper we use this formalism for optimisation of the LISA sensitivity by analysing the noise and signal covariance matrices. The signal covariance matrix, averaged over polarisations and directions, is calculated for binaries whose frequency changes at most adiabatically. We then present the extremal SNR curves for all the data combinations in the module. They correspond to the eigenvectors of the noise and signal covariance matrices. We construct LISA `network' SNR by combining the outputs of the eigenvectors which improves the LISA sensitivity substantially. The maximum SNR curve can yield an improvement upto 70 % over the Michelson, mainly at high frequencies, while the improvement using the network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy model, in which LISA rotates in a plane. In this analysis, we estimate the improvement in the LISA sensitivity, if one switches from one data combination to another as it rotates. Here the improvement in sensitivity, if one switches optimally over three cyclic data combinations of the eigenvector is about 55 % on an average over the LISA band-width. The corresponding SNR improvement is 60 %, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit
    • …
    corecore