430 research outputs found

    Routine exercise-based cardiac rehabilitation does not increase aerobic fitness: A CARE CR study

    Get PDF
    Background Recent evidence suggests that routine exercise-based cardiac rehabilitation (CR) may not lead to a substantial increase in estimated peak oxygen uptake (V̇O2peak). This could reduce the potential benefits of CR and explain why CR no longer improves patient survival in recent studies. We aimed to determine whether routine exercise-based CR increases V̇O2peak using gold-standard maximal cardiopulmonary exercise testing (CPET), and to quantify the exercise training stimulus which might be insufficient in patients undertaking CR. Methods We studied the effects of a routine, twice weekly, exercise-based CR programme for eight weeks (intervention group) compared with abstention from supervised exercise training (control group) in patients with coronary heart disease. The primary outcome was V̇O2peak measured using CPET. We also measured changes in body composition using dual X-ray absorptiometry, carotid intima-media thickness, hs-CRP and N-terminal pro B-type natriuretic peptide at baseline, 10 weeks and one year. We also calculated the Calibre 5-year all-cause mortality risk score. Results Seventy patients (age 63.1 SD10.0 years; BMI 29.2 SD4.0 kg·m−2; 86% male) were recruited (n = 48 intervention; n = 22 controls). The mean aerobic exercise training duration was 23 min per training session, and the mean exercise training intensity was 45.9% of heart rate reserve. V̇O2peak was 23·3 ml·kg-1·min−1 at baseline, and there were no changes in V̇O2peak between groups at any time point. The intervention had no effect on any of the secondary endpoints. Conclusion Routine CR does not lead to an increase in V̇O2peak and is unlikely to improve long-term outcomes

    Instability of generalised AdS black holes and thermal field theory

    Full text link
    We study black holes in AdS-like spacetimes, with the horizon given by an arbitrary positive curvature Einstein metric. A criterion for classical instability of such black holes is found in the large and small black hole limits. Examples of large unstable black holes have a B\"ohm metric as the horizon. These, classically unstable, large black holes are locally thermodynamically stable. The gravitational instability has a dual description, for example by using the AdS7×S4AdS_7 \times S^4 version of the AdS/CFT correspondence. The instability corresponds to a critical temperature of the dual thermal field theory defined on a curved background.Comment: 1+16 pages. 1 figure. LaTeX. Minor clarification

    Ellipticity in Cosmic Microwave Background as a Tracer of Large-Scale Universe

    Get PDF
    Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data confirm the ellipticity of anisotropies of Cosmic Microwave Background (CMB) maps, found previously for Boomerang and WMAP 1-year high sensitivity maps. The low noise level of the WMAP latter data enable also to show that, the ellipticity is a property not described by the conventional cosmological model fitting the power spectrum of CMB. As a large scale anomaly, the ellipticity characteristics are consistent with the effect of geodesics mixing occurring in hyperbolic Universe. Its relation to other large scale effects, i.e. to suppressed low multipoles, as well as to dark energy if the latter is due to vacuum fluctuations, is then an arising issue.Comment: to appear in Phys. Lett.

    Prevalence and risk factors of brucellosis among febrile patients attending a community hospital in south western Uganda

    Get PDF
    Human brucellosis, a chronic disease contracted through contact with animals and consuption of unpasteurized dairy products is underreported in limited-resource countries. This cross-sectional study aimed to determine the prevalence and risk factors of brucellosis among febrile patients attending a community hospital in South western Uganda. A questionnaire that captured socio-demographic, occupational and clinical data was administered. Blood samples were tested for Brucella antibodies using Rose Bengal Plate Test (RBPT) and blood culture with standard aerobic BACTEC bottle was done. Of 235 patients enrolled, prevalence of brucellosis (RBPT or culture confirmed) was 14.9% (95%CI 10.6-20.1) with a culture confrmation in 4.3% of the participants. The factors independently associated with brucellosis were consumption of raw milk (aOR 406.15, 95% CI 47.67-3461.69); history of brucellosis in the family (aOR 9.19, 95% CI 1.98-42.54); and selling hides and skins (aOR 162.56, 95% CI 2.86-9256.31). Hepatomegaly (p < 0.001), splenomegaly (p = 0.018) and low body mass index (p = 0.032) were more common in patients with brucellosis compared to others. Our findings reveal a high prevalence of brucellosis among febrile patients and highlight a need for implementing appropiate tests, public awareness activities and vaccination of animals to control and eliminate the disease

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change

    Quantum Radiation from a 5-Dimensional Rotating Black Hole

    Full text link
    We study a massless scalar field propagating in the background of a five-dimensional rotating black hole. We showed that in the Myers-Perry metric describing such a black hole the massless field equation allows the separation of variables. The obtained angular equation is a generalization of the equation for spheroidal functions. The radial equation is similar to the radial Teukolsky equation for the 4-dimensional Kerr metric. We use these results to quantize the massless scalar field in the space-time of the 5-dimensional rotating black hole and to derive expressions for energy and angular momentum fluxes from such a black hole.Comment: references added, accepted for publication in Physical Review

    Pseudospin symmetry as a relativistic dynamical symmetry in the nucleus

    Get PDF
    Pseudospin symmetry in nuclei is investigated by solving the Dirac equation with Woods-Saxon scalar and vector radial potentials, and studying the correlation of the energy splittings of pseudospin partners with the nuclear potential parameters. The pseudospin interaction is related to a pseudospin-orbit term that arises in a Schroedinger-like equation for the lower component of the Dirac spinor. We show that the contribution from this term to the energy splittings of pseudospin partners is large. The near pseudospin degeneracy results from a significant cancelation among the different terms in that equation, manifesting the dynamical character of this symmetry in the nucleus. We analyze the isospin dependence of the pseudospin symmetry and find that its dynamical character is behind the different pseudospin splittings observed in neutron and proton spectra of nuclei.Comment: 13 pages, 9 figures, uses REVTeX4 macro

    Mining Energy from a Black Hole by Strings

    Full text link
    We discuss how cosmic strings can be used to mine energy from black holes. A string attached to the black hole gives rise to an additional channel for the energy release. It is demonstrated that when a string crosses the event horizon, its transverse degrees of freedom are thermally excited and thermal string perturbations propagate along the string to infinity. The internal metric induced on the 2D worldsheet of the static string crossing the horizon describes a 2D black hole. For this reason thermal radiation of string excitations propagating along the string can be interpreted as Hawking radiation of the 2D black hole. It is shown that the rate of energy emission through the string channel is of the same order of magnitude as the bulk radiation of the black hole. Thus, for N strings attached to the black hole the efficiency of string channels is increased by factor N. We discuss restrictions on N which exist because of the finite thickness of strings, the gravitational backreaction and quantum fluctuations. Our conclusion is that the energy emission rate by strings can be increased as compared to the standard emission in the bulk by the factor 10^3 for GUT strings and up to the factor 10^{31} for electroweak strings.Comment: 13 pages, no figures, final version to appear in Physical Revie

    Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory

    Full text link
    We adopt the general formalism, which was developed in Paper I (arXiv:0708.1233) to analyze the evolution of a quantized time-dependent oscillator, to address several questions in the context of quantum field theory in time dependent external backgrounds. In particular, we study the question of emergence of classicality in terms of the phase space evolution and its relation to particle production, and clarify some conceptual issues. We consider a quantized scalar field evolving in a constant electric field and in FRW spacetimes which illustrate the two extreme cases of late time adiabatic and highly non-adiabatic evolution. Using the time-dependent generalizations of various quantities like particle number density, effective Lagrangian etc. introduced in Paper I, we contrast the evolution in these two limits bringing out key differences between the Schwinger effect and evolution in the de Sitter background. Further, our examples suggest that the notion of classicality is multifaceted and any one single criterion may not have universal applicability. For example, the peaking of the phase space Wigner distribution on the classical trajectory \emph{alone} does not imply transition to classical behavior. An analysis of the behavior of the \emph{classicality parameter}, which was introduced in Paper I, leads to the conclusion that strong particle production is necessary for the quantum state to become highly correlated in phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the first being arXiv:0708.1233 [gr-qc]; high resolution figures available from the authors on reques

    Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

    Full text link
    The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found for a particular toy model and approximate analytic solutions are obtained in the extreme cases of adiabatic and highly non-adiabatic evolution. We then work out the exact results numerically for a variety of models and compare them with the analytic results and approximations. The formalism is useful in addressing the question of emergence of classicality of the quantum state, its relation to particle production and to clarify several conceptual issues related to this. In Paper II (arXiv:0708.1237), which is a sequel to this, the formalism will be applied to analyze the corresponding issues in the context of quantum field theory in background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the second being arXiv:0708.1237 [gr-qc]; high resolution figures available from the authors on reques
    corecore