10,836 research outputs found
Functional adaptivity for digital library services in e-infrastructures: the gCube approach
We consider the problem of e-Infrastructures that wish to reconcile the generality of their services with the bespoke requirements of diverse user communities. We motivate the requirement of functional adaptivity in the context of gCube, a service-based system that integrates Grid and Digital Library technologies to deploy, operate, and monitor Virtual Research Environments defined over infrastructural resources. We argue that adaptivity requires mapping service interfaces onto multiple implementations, truly alternative interpretations of the same functionality. We then analyse two design solutions in which the alternative implementations are, respectively, full-fledged services and local components of a single service. We associate the latter with lower development costs and increased binding flexibility, and outline a strategy to deploy them dynamically as the payload of service plugins. The result is an infrastructure in which services exhibit multiple behaviours, know how to select the most appropriate behaviour, and can seamlessly learn new behaviours
Vacuum technology and space simulation
Manual on vacuum technology and space simulatio
An approach for real-time motion planning of an inchworm robot in complex steel bridge environments
© Cambridge University Press 2016. Path planning can be difficult and time consuming for inchworm robots especially when operating in complex 3D environments such as steel bridges. Confined areas may prevent a robot from extensively searching the environment by limiting its mobility. An approach for real-time path planning is presented. This approach first uses the concept of line-of-sight (LoS) to find waypoints from the start pose to the end node. It then plans smooth, collision-free motion for a robot to move between waypoints using a 3D-F2 algorithm. Extensive simulations and experiments are conducted in 2D and 3D scenarios to verify the approach
Measurement of XeI and XeII velocity in the near exit plane of a low-power Hall effect thruster by light induced fluorescence spectroscopy
Near exit plane non-resonant light induced fluorescence spectroscopy is
performed in a Hall effect low-power Xenon thruster at discharge voltage of
250V and anode flow rate of 0.7mg/sec. Measurement of the axial and radial
velocity components are performed, exciting the 6s[3/2]_2-->6p[3/2]_2
transition at 823.16nm in XeI and the 5d[4]_(7/2)-->6p[3]_(5/2) transition at
834.724nm in XeII. No significant deviation from the thermal velocity is
observed for XeI. Two most probable ion velocities are registered at a given
position with respect to the thruster axis, which are mainly attributed to
different areas of creation of ions inside the acceleration channel. The
spatial resolution of the set-up is limited by the laser beam size (radius of
the order of 0.5mm) and the fluorescence collection optics, which have a view
spot diameter of 8mm.Comment: 6 pages, 8 figure
A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli
This is the author accepted manuscript. The final version is available fromFerrata Storti Foundation via the DOI in this recordThe regulation of platelets by oxidants is critical for vascular health and may explain thrombotic complications in diseases such as diabetes and dementia, but remains poorly understood. Here, we describe a novel technique combining electron paramagnetic resonance spectroscopy and turbidimetry, which has been utilised to monitor simultaneously platelet activation and oxygen radical generation. This technique has been used to investigate the redox-dependence of human and mouse platelets. Using selective peptide inhibitors of NOXs on human platelets and genetically modified mouse platelets (NOX1-/- or NOX2-/-), we discovered that:1) intracellular but not extracellular superoxide anion generated by NADPH oxidases (NOXs) is critical for platelet activation by collagen; 2) superoxide dismutation to hydrogen peroxide is required for thrombin-dependent activation; 3) NOX1 is the main source of oxygen radicals in response to collagen, while NOX2 is critical for activation by thrombin; 4) two platelet modulators, namely oxidised low density lipoproteins (oxLDL) and amyloid peptide β (Aβ), require activation of both NOX1 and NOX2 to pre-activate platelets. This study provides new insights on the redox dependence of platelet activation. It suggests the possibility of selectively inhibiting platelet agonists by targeting either NOX1 (for collagen) or NOX2 (for thrombin). Selective inhibition of either NOX1 or NOX2 impairs the potentiatory effect of tested platelet modulators (oxLDL and Aβ), but does not completely abolish platelet haemostatic function. This information offers new opportunities for the development of disease specific antiplatelet drugs with limited bleeding side effects by selectively targeting one NOX isoenzyme.British Heart Foundatio
Prediction of forces and moments for hypersonic flight vehicle control effectors
This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer
Weekend hospitalization and additional risk of death: An analysis of inpatient data
Objective To assess whether weekend admissions to hospital and/or already being an inpatient on weekend days were associated with any additional mortality risk.Design Retrospective observational survivorship study. We analysed all admissions to the English National Health Service (NHS) during the financial year 2009/10, following up all patients for 30 days after admission and accounting for risk of death associated with diagnosis, co-morbidities, admission history, age, sex, ethnicity, deprivation, seasonality, day of admission and hospital trust, including day of death as a time dependent covariate. The principal analysis was based on time to in-hospital death.Participants National Health Service Hospitals in England.Main Outcome Measures 30 day mortality (in or out of hospital).Results There were 14,217,640 admissions included in the principal analysis, with 187,337 in-hospital deaths reported within 30 days of admission. Admission on weekend days was associated with a considerable increase in risk of subsequent death compared with admission on weekdays, hazard ratio for Sunday versus Wednesday 1.16 (95% CI 1.14 to 1.18; P < .0001), and for Saturday versus Wednesday 1.11 (95% CI 1.09 to 1.13; P < .0001). Hospital stays on weekend days were associated with a lower risk of death than midweek days, hazard ratio for being in hospital on Sunday versus Wednesday 0.92 (95% CI 0.91 to 0.94; P < .0001), and for Saturday versus Wednesday 0.95 (95% CI 0.93 to 0.96; P < .0001). Similar findings were observed on a smaller US data set.Conclusions Admission at the weekend is associated with increased risk of subsequent death within 30 days of admission. The likelihood of death actually occurring is less on a weekend day than on a mid-week day
Constraining Fundamental Physics with Future CMB Experiments
The Planck experiment will soon provide a very accurate measurement of Cosmic
Microwave Background anisotropies. This will let cosmologists determine most of
the cosmological parameters with unprecedented accuracy. Future experiments
will improve and complement the Planck data with better angular resolution and
better polarization sensitivity. This unexplored region of the CMB power
spectrum contains information on many parameters of interest, including
neutrino mass, the number of relativistic particles at recombination, the
primordial Helium abundance and the injection of additional ionizing photons by
dark matter self-annihilation. We review the imprint of each parameter on the
CMB and forecast the constraints achievable by future experiments by performing
a Monte Carlo analysis on synthetic realizations of simulated data. We find
that next generation satellite missions such as CMBPol could provide valuable
constraints with a precision close to that expected in current and near future
laboratory experiments. Finally, we discuss the implications of this
intersection between cosmology and fundamental physics.Comment: 11 pages, 14 figure
- …