109 research outputs found

    The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity

    Get PDF
    Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required for the developmental function of this protein. Biochemical analysis identified UTX-1 as a component of a complex that includes SET-16(MLL), and genetic analysis indicates that the defects associated with loss of UTX-1 are likely mediated by compromised SET-16/UTX-1 complex activity. Taken together, these results demonstrate that UTX-1 is required for many aspects of nematode development; but, unexpectedly, this function is independent of its enzymatic activity

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia gladioli </it>pathovar <it>cocovenenans </it>(BGC) is responsible for sporadic food-poisoning outbreaks with high morbidity and mortality in Asian countries. Little is known about the regulation of virulence factor and toxin production in BGC, and studies in this bacterium have been hampered by lack of genetic tools.</p> <p>Findings</p> <p>Establishment of a comprehensive antibiotic susceptibility profile showed that BGC strain ATCC33664 is susceptible to a number of antibiotics including aminoglycosides, carbapenems, fluoroquinolones, tetracyclines and trimethoprim. In this study, we established that gentamicin, kanamycin and trimethoprim are good selection markers for use in BGC. Using a 10 min method for preparation of electrocompetent cells, the bacterium could be transformed by electroporation at high frequencies with replicative plasmids containing the pRO1600-derived origin of replication. These plasmids exhibited a copy number of > 100 in BGC. When co-conjugated with a transposase expressing helper plasmid, mini-Tn<it>7 </it>vectors inserted site- and orientation-specifically at a single <it>glmS</it>-associated insertion site in the BGC genome. Lastly, a <it>Himar1 </it>transposon was used for random transposon mutagenesis of BGC.</p> <p>Conclusions</p> <p>A series of genetic tools previously developed for other Gram-negative bacteria was adapted for use in BGC. These tools now facilitate genetic studies of this pathogen and allow establishment of toxin biosynthetic pathways and their genetic regulation.</p

    Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species

    Get PDF
    Antimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-37 of the human innate immune system interacts with membranes, we performed biochemical, biophysical and structural studies. The crystal structure of LL-37 displays dimers of anti-parallel helices and the formation of amphipathic surfaces. Peptide-detergent interactions introduce remodeling of this structure after occupation of defined hydrophobic sites at the dimer interface. Furthermore, hydrophobic nests are shaped between dimer structures providing another scaffold enclosing detergents. Both scaffolds underline the potential of LL-37 to form defined peptide-lipid complexes in vivo. After adopting the activated peptide conformation LL-37 can polymerize and selectively extract bacterial lipids whereby the membrane is destabilized. The supramolecular fibril-like architectures formed in crystals can be reproduced in a peptide-lipid system after nanogold-labelled LL-37 interacted with lipid vesicles as followed by electron microscopy. We suggest that these supramolecular structures represent the LL-37-membrane active state. Collectively, our study provides new insights into the fascinating plasticity of LL-37 demonstrated at atomic resolution and opens the venue for LL-37-based molecules as novel antibiotics.We would like to thank Sandra Delgado for the technical help in the preparation of the cryoEM vitrified grids and Dr. Isabel Uson and Dr. Ivan De Marino for the Arcimboldo software and valuable help. Funding was provided by the Unidad de Biofisica and the IKERBASQUE and MINECO science foundations

    Improving phylogeny reconstruction at the strain level using peptidome datasets

    Get PDF
    Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.This research was funded by Grant AGL2013-44039-R from the Spanish “Plan Estatal de I+D+I”, and by Grant EM2014/046 from the “Plan Galego de investigación, innovación e crecemento 2011-2015”. BS was recipient of a Ramón y Cajal postdoctoral contractfrom the Spanish Ministry of Economyand Competitiveness. This work was also partially funded by the [14VI05] Contract-Programme from the University of Vigo and the Agrupamento INBIOMED from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273).The research leading to these results has also received funding from the European Union’s Seventh Framework Programme FP7/REGPOT-2012-2013.1 under grant agreement n˚ 316265, BIOCAPS. This document reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained herein. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Drosophila melanogaster as a Model Host for the Burkholderia cepacia Complex

    Get PDF
    Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms.The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models.We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests

    Frequent and Recent Human Acquisition of Simian Foamy Viruses Through Apes' Bites in Central Africa

    Get PDF
    Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. This study aimed at getting better knowledge on SFV transmission dynamics, risk factors for such a zoonotic infection and, searching for intra-familial dissemination and the level of peripheral blood (pro)viral loads in infected individuals. We studied 1,321 people from the general adult population (mean age 49 yrs, 640 women and 681 men) and 198 individuals, mostly men, all of whom had encountered a NHP with a resulting bite or scratch. All of these, either Pygmies (436) or Bantus (1085) live in villages in South Cameroon. A specific SFV Western blot was used and two nested PCRs (polymerase, and LTR) were done on all the positive/borderline samples by serology. In the general population, 2/1,321 (0.2%) persons were found to be infected. In the second group, 37/198 (18.6%) persons were SFV positive. They were mostly infected by apes (37/39) FV (mainly gorilla). Infection by monkey FV was less frequent (2/39). The viral origin of the amplified sequences matched with the history reported by the hunters, most of which (83%) are aged 20 to 40 years and acquired the infection during the last twenty years. The (pro)viral load in 33 individuals infected by a gorilla FV was quite low (<1 to 145 copies per 105 cells) in the peripheral blood leucocytes. Of the 30 wives and 12 children from families of FV infected persons, only one woman was seropositive in WB without subsequent viral DNA amplification. We demonstrate a high level of recent transmission of SFVs to humans in natural settings specifically following severe gorilla bites during hunting activities. The virus was found to persist over several years, with low SFV loads in infected persons. Secondary transmission remains an open question
    corecore