185 research outputs found

    The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    Get PDF
    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Systematic Identification of Genes that Regulate Neuronal Wiring in the Drosophila Visual System

    Get PDF
    Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring

    Illusions of Visual Motion Elicited by Electrical Stimulation of Human MT Complex

    Get PDF
    Human cortical area MT+ (hMT+) is known to respond to visual motion stimuli, but its causal role in the conscious experience of motion remains largely unexplored. Studies in non-human primates demonstrate that altering activity in area MT can influence motion perception judgments, but animal studies are inherently limited in assessing subjective conscious experience. In the current study, we use functional magnetic resonance imaging (fMRI), intracranial electrocorticography (ECoG), and electrical brain stimulation (EBS) in three patients implanted with intracranial electrodes to address the role of area hMT+ in conscious visual motion perception. We show that in conscious human subjects, reproducible illusory motion can be elicited by electrical stimulation of hMT+. These visual motion percepts only occurred when the site of stimulation overlapped directly with the region of the brain that had increased fMRI and electrophysiological activity during moving compared to static visual stimuli in the same individual subjects. Electrical stimulation in neighboring regions failed to produce illusory motion. Our study provides evidence for the sufficient causal link between the hMT+ network and the human conscious experience of visual motion. It also suggests a clear spatial relationship between fMRI signal and ECoG activity in the human brain

    Mild gestational diabetes in pregnancy and the adipoinsular axis in babies born to mothers in the ACHOIS randomised controlled trial

    Get PDF
    BACKGROUND: Mild gestational diabetes is a common complication of pregnancy, affecting up to 9% of pregnant women. Treatment of mild GDM is known to reduce adverse perinatal outcomes such as macrosomia and associated birth injuries, such as shoulder dystocia, bone fractures and nerve palsies. This study aimed to compare the plasma glucose concentrations and serum insulin, leptin and adiponectin in cord blood of babies of women (a) without gestational diabetes mellitus (GDM), (b) with mild GDM under routine care, or (c) mild GDM with treatment. METHODS: 95 women with mild GDM on oral glucose tolerance testing (OGTT) at one tertiary level maternity hospital who had been recruited to the ACHOIS trial at one of the collaborating hospitals and randomised to either Treatment (n = 46) or Routine Care (n = 49) and Control women with a normal OGTT (n = 133) were included in the study. Women with mild GDM (treatment or routine care group) and OGTT normal women received routine pregnancy care. In addition, women with treated mild GDM received dietary advice, blood glucose monitoring and insulin if necessary. The primary outcome measures were cord blood concentrations of glucose, insulin, adiponectin and leptin. RESULTS: Cord plasma glucose was higher in women receiving routine care compared with control, but was normalized by treatment for mild GDM (p = 0.01). Cord serum insulin and insulin to glucose ratio were similar between the three groups. Leptin concentration in cord serum was lower in GDM treated women compared with routine care (p = 0.02) and not different to control (p = 0.11). Adiponectin was lower in both mild GDM groups compared with control (Treatment p = 0.02 and Routine Care p = 0.07), while the adiponectin to leptin ratio was lower for women receiving routine care compared with treatment (p = 0.08) and control (p = 0.05). CONCLUSION: Treatment of women with mild GDM using diet, blood glucose monitoring and insulin if necessary, influences the altered fetal adipoinsular axis characteristic of mild GDM in pregnancy

    Merging Resource Availability with Isotope Mixing Models: The Role of Neutral Interaction Assumptions

    Get PDF
    Background: Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predator's diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal proportions), particularly when multiple prey have similar isotope values. Methodology: We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a predator's diet. We test the utility of this method in an intertidal community against independently measured feeding rates. Conclusions: Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for predictive power is merited, particularly when the relationship between prey availability and a predator's diet cannot be assumed for all species in a system.National Science Foundation (NSF) [DEB-0608178]U.S. Environmental Protection AgencyDepartment of EducationSigma XiUniversity of ChicagoFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superiori

    The role of left and right hemispheres in the comprehension of idiomatic language: an electrical neuroimaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The specific role of the two cerebral hemispheres in processing idiomatic language is highly debated. While some studies show the involvement of the left inferior frontal gyrus (LIFG), other data support the crucial role of right-hemispheric regions, and particularly of the middle/superior temporal area. Time-course and neural bases of literal vs. idiomatic language processing were compared. Fifteen volunteers silently read 360 idiomatic and literal Italian sentences and decided whether they were semantically related or unrelated to a following target word, while their EEGs were recorded from 128 electrodes. Word length, abstractness and frequency of use, sentence comprehensibility, familiarity and cloze probability were matched across classes.</p> <p>Results</p> <p>Participants responded more quickly to literal than to idiomatic sentences, probably indicating a difference in task difficulty. Occipito/temporal N2 component had a greater amplitude in response to idioms between 250-300 ms. Related swLORETA source reconstruction revealed a difference in the activation of the left fusiform gyrus (FG, BA19) and medial frontal gyri for the contrast idiomatic-minus-literal. Centroparietal N400 was much larger to idiomatic than to literal phrases (360-550 ms). The intra-cortical generators of this effect included the left and right FG, the left cingulate gyrus, the right limbic area, the right MTG (BA21) and the left middle frontal gyrus (BA46). Finally, an anterior late positivity (600-800 ms) was larger to idiomatic than literal phrases. ERPs also showed a larger right centro-parietal N400 to associated than non-associated targets (not differing as a function of sentence type), and a greater right frontal P600 to idiomatic than literal associated targets.</p> <p>Conclusion</p> <p>The data indicate bilateral involvement of both hemispheres in idiom comprehension, including the right MTG after 350 ms and the right medial frontal gyrus in the time windows 270-300 and 500-780 ms. In addition, the activation of left and right limbic regions (400-450 ms) suggests that they have a role in the emotional connotation of colourful idiomatic language. The data support the view that there is direct access to the idiomatic meaning of figurative language, not dependent on the suppression of its literal meaning, for which the LIFG was previously thought to be responsible.</p

    Redundant Mechanisms for Regulation of Midline Crossing in Drosophila

    Get PDF
    During development, all neurons have to decide on whether to cross the longitudinal midline to project on the contralateral side of the body. In vertebrates and invertebrates regulation of crossing is achieved by interfering with Robo signalling either through sorting and degradation of the receptor, in flies, or through silencing of its repulsive activity, in vertebrates. Here I show that in Drosophila a second mechanism of regulation exists that is independent from sorting. Using in vitro and in vivo assays I mapped the region of Robo that is sufficient and required for its interaction with Comm, its sorting receptor. By modifying that region, I generated new forms of Robo that are insensitive to Comm sorting in vitro and in vivo, yet still able to normally translate repulsive activity in vivo. Using gene targeting by homologous recombination I created new conditional alleles of robo that are sorting defective (roboSD). Surprisingly, expression of these modified proteins results in phenotypically normal flies, unveiling a sorting independent mechanism of regulation
    • …
    corecore