34 research outputs found

    Unicentric mixed variant castleman disease associated with intrabronchial plasmacytoma.

    Get PDF
    Castleman disease (CD), described as a heterogeneous lymphoproliferative disorder, can be divided into different subtypes according to clinical appearance (unicentric and multicentric form) and histopathological features (hyaline vascular, plasma cell, mixed type, human herpesvirus 8-associated and multicentric not otherwise specified). Unicentric CD is known to be usually of the hyaline vascular variant, plasma cell and mixed type of this form are quite uncommon. Malignancies are mainly associated with the multicentric form. We report a rare case of unicentric mixed variant CD evolving into intrabronchial, extramedullary plasmacytoma.Intrabronchial mass with consequential obstruction of the left main bronchus, left lung atelectasis and mediastinal lymphadenomegaly was detected by chest CT in our patient suffering from cough and hemoptysis. Pulmonectomy was performed, histopathological and immunhistochemical analysis of lymph nodes revealed mixed type of CD with interfollicular monotypic plasma cell proliferation. The intrabronchial mass consisted of monotypic plasma cells confirming plasmacytoma. Systemic involvement was not confirmed by further tests.Although malignancies more often present in multicentric CD that usually belongs to the plasma cell subtype, this case confirms the neoplastic potential of the rarest, unicentric mixed variant of CD.Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2872096831190851

    Pramipexole effects on startle gating in rats and normal men

    Get PDF
    Dopamine D3 receptors regulate sensorimotor gating in rats, as evidenced by changes in prepulse inhibition (PPI) of startle after acute administration of D3 agonists and antagonists. In this study, we tested the effects of the D3-preferential agonist, pramipexole, on PPI in normal men and Sprague–Dawley rats. Acoustic startle and PPI were tested in clinically normal men, comparing the effects of placebo vs. 0.125 mg (n = 20) or placebo vs. 0.1875 mg (n = 20) pramipexole, in double blind, crossover designs. These measures were also tested in male Sprague–Dawley rats using a parallel design [vehicle vs. 0.1 mg/kg (n = 8), vehicle vs. 0.3 mg/kg (n = 8) or vehicle vs. 1.0 mg/kg pramipexole (n = 8)]. Autonomic and subjective measures of pramipexole effects and several personality instruments were also measured in humans. Pramipexole increased drowsiness and significantly increased PPI at 120-ms intervals in humans; the latter effect was not moderated by baseline PPI or personality scale scores. In rats, pramipexole causes a dose-dependent reduction in long-interval (120 ms) PPI, while low doses actually increased short-interval (10–20 ms) PPI. Effects of pramipexole on PPI in rats were independent of baseline PPI and changes in startle magnitude. The preferential D3 agonist pramipexole modifies PPI in humans and rats. Unlike indirect DA agonists and mixed D2/D3 agonists, pramipexole increases long-interval PPI in humans, in a manner that is independent of baseline PPI and personality measures. These findings are consistent with preclinical evidence for differences in the D2- and D3-mediated regulation of sensorimotor gating

    Effect of apomorphine on cognitive performance and sensorimotor gating in humans

    Get PDF
    Contains fulltext : 88792.pdf (publisher's version ) (Closed access)INTRODUCTION: Dysfunction of brain dopamine systems is involved in various neuropsychiatric disorders. Challenge studies with dopamine receptor agonists have been performed to assess dopamine receptor functioning, classically using the release of growth hormone (GH) from the hindbrain as primary outcome measure. The objective of the current study was to assess dopamine receptor functioning at the forebrain level. METHODS: Fifteen healthy male volunteers received apomorphine sublingually (2 mg), subcutaneously (0.005 mg/kg), and placebo in a balanced, double-blind, cross-over design. Outcome measures were plasma GH levels, performance on an AX continuous performance test, and prepulse inhibition of the acoustic startle. The relation between central outcome measures and apomorphine levels observed in plasma and calculated in the brain was modeled using a two-compartmental pharmacokinetic-pharmacodynamic analysis. RESULTS: After administration of apomorphine, plasma GH increased and performance on the AX continuous performance test deteriorated, particularly in participants with low baseline performance. Apomorphine disrupted prepulse inhibition (PPI) on high-intensity (85 dB) prepulse trials and improved PPI on low intensity (75 dB) prepulse trials, particularly in participants with low baseline PPI. High cognitive performance at baseline was associated with reduced baseline sensorimotor gating. Neurophysiological measures correlated best with calculated brain apomorphine levels after subcutaneous administration. CONCLUSION: The apomorphine challenge test appears a useful tool to assess dopamine receptor functioning at the forebrain level. Modulation of the effect of apomorphine by baseline performance levels may be explained by an inverted U-shape relation between prefrontal dopamine functioning and cognitive performance, and mesolimbic dopamine functioning and sensorimotor gating. Future apomorphine challenge tests preferentially use multiple outcome measures, after subcutaneous administration of apomorphine.1 januari 201

    Increased expression of receptor phosphotyrosine phosphatase-β/ζ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes

    Get PDF
    Schizophrenia is a serious and chronic mental disorder, in which both genetic and environmental factors have a role in the development of the disease. Neuregulin-1 (NRG1) is one of the most established genetic risk factors for schizophrenia, and disruption of NRG1 signaling has been reported in this disorder. We reported previously that NRG1/ErbB4 signaling is inhibited by receptor phosphotyrosine phosphatase-β/ζ (RPTP β/ζ) and that the gene encoding RPTPβ/ζ (PTPRZ1) is genetically associated with schizophrenia. In this study, we examined the expression of RPTPβ/ζ in the brains of patients with schizophrenia and observed increased expression of this gene. We developed mice overexpressing RPTPβ/ζ (PTPRZ1-transgenic mice), which showed reduced NRG1 signaling, and molecular and cellular changes implicated in the pathogenesis of schizophrenia, including altered glutamatergic, GABAergic and dopaminergic activity, as well as delayed oligodendrocyte development. Behavioral analyses also demonstrated schizophrenia-like changes in the PTPRZ1-transgenic mice, including reduced sensory motor gating, hyperactivity and working memory deficits. Our results indicate that enhanced RPTPβ/ζ signaling can contribute to schizophrenia phenotypes, and support both construct and face validity for PTPRZ1-transgenic mice as a model for multiple schizophrenia phenotypes. Furthermore, our results implicate RPTPβ/ζ as a therapeutic target in schizophrenia

    Influence of aripiprazole, risperidone, and amisulpride on sensory and sensorimotor gating in healthy 'low and high gating' humans and relation to psychometry

    Full text link
    Despite advances in the treatment of schizophrenia spectrum disorders with atypical antipsychotics (AAPs), there is still need for compounds with improved efficacy/side-effect ratios. Evidence from challenge studies suggests that the assessment of gating functions in humans and rodents with naturally low-gating levels might be a useful model to screen for novel compounds with antipsychotic properties. To further evaluate and extend this translational approach, three AAPs were examined. Compounds without antipsychotic properties served as negative control treatments. In a placebo-controlled, within-subject design, healthy males received either single doses of aripiprazole and risperidone (n=28), amisulpride and lorazepam (n=30), or modafinil and valproate (n=30), and placebo. Prepulse inhibiton (PPI) and P50 suppression were assessed. Clinically associated symptoms were evaluated using the SCL-90-R. Aripiprazole, risperidone, and amisulpride increased P50 suppression in low P50 gaters. Lorazepam, modafinil, and valproate did not influence P50 suppression in low gaters. Furthermore, low P50 gaters scored significantly higher on the SCL-90-R than high P50 gaters. Aripiprazole increased PPI in low PPI gaters, whereas modafinil and lorazepam attenuated PPI in both groups. Risperidone, amisulpride, and valproate did not influence PPI. P50 suppression in low gaters appears to be an antipsychotic-sensitive neurophysiologic marker. This conclusion is supported by the association of low P50 suppression and higher clinically associated scores. Furthermore, PPI might be sensitive for atypical mechanisms of antipsychotic medication. The translational model investigating differential effects of AAPs on gating in healthy subjects with naturally low gating can be beneficial for phase II/III development plans by providing additional information for critical decision making

    Nicotine differentially modulates antisaccade performance in healthy male non-smoking volunteers stratified for low and high accuracy

    Full text link
    RATIONALE: Nicotinergic agents are currently examined as possible pro-cognitive drugs for a variety of clinical conditions marked by cognitive deficits, such as attention deficit hyperactivity disorder (ADHD) or schizophrenia. The response to acute nicotine is heterogeneous across subjects and samples; however, only a few reliable predictors of response have been identified. OBJECTIVES: We tested the hypothesis that baseline performance level in cognitive control may be a predictor of the cognitive effects of nicotine. METHODS: We tested 28 healthy Caucasian, male, non-smoking volunteers with the antisaccade task, an oculomotor measure of cognitive control. Participants were given a 7-mg nicotine patch in a double-blind, placebo-controlled, counterbalanced, within-subjects design. Subjects were stratified into high and low performers based on their antisaccade error rate in the placebo condition (median split). RESULTS: Nicotine tended to reduce response time variability of prosaccade latency (p = 0.06). There was no main effect of nicotine on antisaccade error rate (p = 0.31). However, nicotine significantly reduced antisaccade error rate in the low-accuracy probands while leaving performance of the high-accuracy probands unaffected (interaction, p < 0.05). Furthermore, we found a nicotine-induced reduction of response time variability of antisaccade latency at one target location in the low-performing group (interaction, p < 0.05). CONCLUSIONS: The present results demonstrate the importance of baseline performance differences for the effectiveness of pharmacological enhancement of cognitive control. More generally, the results suggest that stimulation of the nicotinic acetylcholine receptor system might be an effective way of improving cognition in people with poor cognitive performance, such as patients with ADHD or schizophrenia
    corecore