21 research outputs found

    Effects of two-months balanced diet in metabolically healthy obesity: lipid correlations with gender and BMI-related differences

    Get PDF
    BACKGROUND: Nowadays no researches has been performed on fatty acid profile (FA) and desaturase activity in metabolically healthy obesity (MHO). The aim of this study was to assessed gender and BMI-related difference in FA, estimated desaturase activities and the efficacy on metabolic changes produced by 2-months well-balance diet in MHO subjects. METHODS: In 103 MHO subjects (30/73 M/F; age:42.2 ± 9.5) FA, estimated desaturase activity, body composition (by DXA), Body Mass Index (BMI), lipid profile, adipokines (leptin, adiponectin, grelin, glucagon-like peptide-1), insulin resistence (by Homestasis metabolic assessment), C-reactive proteine, Atherogenic index of plasma (AIP) and Body Shape Index (ABSI) have been assessed. Gender and BMI related difference have been evaluated and the efficacy produced by 2-months well-balance diet has been considered. RESULTS: At baseline, obese subjects, compared to overweight, show a significantly higher oleic (p <0.050), monounsaturated fatty acids (p <0.040), C18:0 delta-9 desaturase activity (D9D) (p <0.040) and lower linoleic acid (p <0.020), polyunsaturated fatty acids (p <0.020) and n-6 LCPUFA (p <0.010). Concerning gender-related difference, women show a significantly higher arachidonic acid (p <0.001), polyunsaturated fatty acids (p <0.001), n-6 LCPUFA (p <0.002), and lower monounsaturated fatty acids (p <0.001), D6D activity (p <0.030), C18:0 D9D (0.000) and C16:0 D9D (p <0.030). The 2-months diet was associated with a significantly increase in arachidonic acid (p = 0.007), eicosapentaenoic acid (p = 0.030), docosahexaenoic acid (p <0.001), long chain omega 3 polyunsaturated fatty acids (n-3 LCPUFA) (p <0.001), delta-5 desaturase activity (D5D) (p = 0.002), glucagon like peptide-1 (p <0.001) and a significant decrease in palmitoleic acid (p = <0.030), n-6/n-3 LCPUFA (p <0.001), insulin resistance (p = 0.006), leptin (p = 0.006), adiponectin (p <0.001), grelin (p = 0.030), CRP (p = 0.004), BMI (p <0.001) and android fat mass (p <0.001). CONCLUSIONS: The balanced diet intervention was effective in improving metabolic indices

    Two ABCB4 point mutations of strategic NBD-motifs do not prevent protein targeting to the plasma membrane but promote MDR3 dysfunction

    No full text
    The ABCB4 gene encodes for MDR3, a protein that translocates phosphatidylcholine from the inner to the outer leaflet of the hepatocanalicular membrane; its deficiency favors the formation of \u2018toxic bile\u2019. Several forms of hepatobiliary diseases have been associated with ABCB4 mutations, but the detrimental effects of most mutations on the encoded protein needs to be clarified. Among subjects with cholangiopathies who were screened for mutations in ABCB4 by direct sequencing, we identified the new mutation p.(L481R) in three brothers. According to our model of tertiary structure, this mutation affects the Q-loop, whereas the p.(Y403H) mutation, that we already described in two other families, involves the A-loop. This study was aimed at analyzing the functional relevance of these two ABCB4 mutations: MDR3 expression and lipid content in the culture supernatant were evaluated in cell lines stably transfected with the ABCB4 wild-type clone and corresponding mutants. No differences of expression were observed between wild-type and mutant gene products. Instead, both mutations caused a reduction of phosphatidylcholine secretion compared with the wild-type transfected cell lines. On the contrary, cholesterol (Chol) release, after 1 and 3mM sodium taurocholate stimulation, was higher in the mutant-transfected cell lines than that in the wild-type and was particularly enhanced in cells transfected with the p.Y403H-construct. In summary, our data show that both mutations do not seem to affect protein expression, but are able to reduce the efflux of phosphatidylcholine associated with increase of Chol, thereby promoting the formation of toxic bil

    Glycerol-3-phosphate acyltransferase 2 expression modulates cell roughness and membrane permeability: An atomic force microscopy study.

    Get PDF
    In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology
    corecore