231 research outputs found
Solving Problems on Graphs of High Rank-Width
A modulator of a graph G to a specified graph class H is a set of vertices
whose deletion puts G into H. The cardinality of a modulator to various
tractable graph classes has long been used as a structural parameter which can
be exploited to obtain FPT algorithms for a range of hard problems. Here we
investigate what happens when a graph contains a modulator which is large but
"well-structured" (in the sense of having bounded rank-width). Can such
modulators still be exploited to obtain efficient algorithms? And is it even
possible to find such modulators efficiently?
We first show that the parameters derived from such well-structured
modulators are strictly more general than the cardinality of modulators and
rank-width itself. Then, we develop an FPT algorithm for finding such
well-structured modulators to any graph class which can be characterized by a
finite set of forbidden induced subgraphs. We proceed by showing how
well-structured modulators can be used to obtain efficient parameterized
algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use
well-structured modulators to develop an algorithmic meta-theorem for deciding
problems expressible in Monadic Second Order (MSO) logic, and prove that this
result is tight in the sense that it cannot be generalized to LinEMSO problems.Comment: Accepted at WADS 201
Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra
We define a theory of Galilean gravity in 2+1 dimensions with cosmological
constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke
group, extending our previous study of classical and quantum gravity in 2+1
dimensions in the Galilean limit. We exhibit an r-matrix which is compatible
with our Chern-Simons action (in a sense to be defined) and show that the
associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the
classical double of the extended Heisenberg algebra. We deduce that, in the
quantisation of the theory according to the combinatorial quantisation
programme, much of the quantum theory is determined by the quantum double of
the extended q-deformed Heisenberg algebra.Comment: 22 page
Measurement of local optomechanical properties of a direct bandgap 2D semiconductor
Strain engineering is a powerful tool for tuning physical properties of 2D materials, including monolayer transition metal dichalcogenides (TMDs)—direct bandgap semiconductors with strong excitonic response. Deformation of TMD monolayers allows inducing modulation of exciton potential and, ultimately, creating single-photon emitters at desired positions. The performance of such systems is critically dependent on the exciton energy profile and maximum possible exciton energy shift that can be achieved under local impact until the monolayer rupture. Here, we study the evolution of two-dimensional exciton energy profile induced in a MoSe2 monolayer under incremental local indentation until the rupture. We controllably stress the flake with an atomic force microscope tip and perform in situ spatiospectral mapping of the excitonic photoluminescence in the vicinity of the indentation point. In order to accurately fit the experimental data, we combine numerical simulations with a simple model of strain-induced modification of the local excitonic response and carefully account for the optical resolution of the setup. This allows us to extract deformation, strain, and exciton energy profiles obtained at each indentation depth. The maximum exciton energy shift induced by local deformation achieved at 300 nm indentation reaches the value of 36.5 meV and corresponds to 1.15% strain of the monolayer. Our approach is a powerful tool for in situ characterization of local optomechanical properties of 2D direct bandgap semiconductors with strong excitonic response
Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6
Resonant magnetic excitations are widely recognized as hallmarks of
unconventional superconductivity in copper oxides, iron pnictides, and
heavy-fermion compounds. Numerous model calculations have related these modes
to the microscopic properties of the pair wave function, but the mechanisms
underlying their formation are still debated. Here we report the discovery of a
similar resonant mode in the non-superconducting, antiferromagnetically ordered
heavy-fermion metal CeB6. Unlike conventional magnons, the mode is
non-dispersive, and its intensity is sharply concentrated around a wave vector
separate from those characterizing the antiferromagnetic order. The magnetic
intensity distribution rather suggests that the mode is associated with a
coexisting order parameter of the unusual antiferro-quadrupolar phase of CeB6,
which has long remained "hidden" to the neutron-scattering probes. The mode
energy increases continuously below the onset temperature for
antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap
throughout the Brillouin zone. These attributes bear strong similarity to those
of the resonant modes observed in unconventional superconductors below their
critical temperatures. This unexpected commonality between the two disparate
ground states indicates the dominance of itinerant spin dynamics in the ordered
low-temperature phases of CeB6 and throws new light on the interplay between
antiferromagnetism, superconductivity, and "hidden" order parameters in
correlated-electron materials
Clique-width : harnessing the power of atoms.
Many NP-complete graph problems are polynomial-time solvable on graph classes of bounded clique-width. Several of these problems are polynomial-time solvable on a hereditary graph class G if they are so on the atoms (graphs with no clique cut-set) of G . Hence, we initiate a systematic study into boundedness of clique-width of atoms of hereditary graph classes. A graph G is H-free if H is not an induced subgraph of G, and it is (H1,H2) -free if it is both H1 -free and H2 -free. A class of H-free graphs has bounded clique-width if and only if its atoms have this property. This is no longer true for (H1,H2) -free graphs, as evidenced by one known example. We prove the existence of another such pair (H1,H2) and classify the boundedness of clique-width on (H1,H2) -free atoms for all but 18 cases
SSeCKS/Gravin/AKAP12 attenuates expression of proliferative and angiogenic genes during suppression of v-Src-induced oncogenesis
BACKGROUND: SSeCKS is a major protein kinase C substrate with kinase scaffolding and metastasis-suppressor activity whose expression is severely downregulated in Src- and Ras-transformed fibroblast and epithelial cells and in human prostate, breast, and gastric cancers. We previously used NIH3T3 cells with tetracycline-regulated SSeCKS expression plus a temperature-sensitive v-Src allele to show that SSeCKS re-expression inhibited parameters of v-Src-induced oncogenic growth without attenuating in vivo Src kinase activity. METHODS: We use cDNA microarrays and semi-quantitative RT-PCR analysis to identify changes in gene expression correlating with i) SSeCKS expression in the absence of v-Src activity, ii) activation of v-Src activity alone, and iii) SSeCKS re-expression in the presence of active v-Src. RESULTS: SSeCKS re-expression resulted in the attenuation of critical Src-induced proliferative and pro-angiogenic gene expression including Afp, Hif-1α, Cdc20a and Pdgfr-β, and conversely, SSeCKS induced several cell cycle regulatory genes such as Ptpn11, Gadd45a, Ptplad1, Cdkn2d (p19), and Rbbp7. CONCLUSION: Our data provide further evidence that SSeCKS can suppress Src-induced oncogenesis by modulating gene expression downstream of Src kinase activity
Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds
© Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds
Measurement of Trilinear Gauge Couplings in Collisions at 161 GeV and 172 GeV
Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for couplings () are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the final state in which one decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral couplings from an analysis of the reaction \eegi
Search for neutral heavy leptons produced in decays
Weak isosinglet Neutral Heavy Leptons (νm) have been searched for using data collected by the DELPHI detector corresponding to 3.3 × 106 hadronic Z0 decays at LEP1. Four separate searches have been performed, for short-lived νm production giving monojet or acollinear jet topologies, and for long-lived νm giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(Z0 → νmν̄) of about 1.3 × 10-6 at 95% confidence level for νm masses between 3.5 and 50 GeV/c2. Outside this range the limit weakens rapidly with the νm mass. The results are also interpreted in terms of limits for the single production of excited neutrinos. © Springer-Verlag 1997
- …