721 research outputs found
Effect of molecular relaxation processes on travelling wave solutions of sonic boom waveforms
Asymptotic and numerical analyses are presented for the travelling wave solution of the one-dimensional acoustic wave associated with the sonic boom, subject to thermoviscous dissipation and two molecular relaxation processes. Examination of how these relaxation processes affect the propagation of a weak shock is discussed in detail
Dephasing of Electrons on Helium by Collisions with Gas Atoms
The damping of quantum effects in the transport properties of electrons
deposited on a surface of liquid helium is studied. It is found that due to
vertical motion of the helium vapour atoms the interference of paths of
duration is damped by a factor . An expression is
derived for the weak-localization lineshape in the case that damping occurs by
a combination of processes with this type of cubic exponential damping and
processes with a simple exponential damping factor.Comment: 7 pages, 2 figures, Revte
Effect of molecular relaxation on the propagation of sonic booms through a stratified atmosphere
Nonlinear acoustic wave propagation through a stratified atmosphere is considered. The initial signal is taken to be an isolated N-wave, which is the disturbance that is generated some distance away from a supersonic body in horizontal flight. The effect of cylindrical spreading and exponential density stratification on the propagation of the disturbance is considered, with the shock structure controlled by molecular relaxation mechanisms and by thermoviscous diffusion. An augmented Burgers equation is obtained and asymptotic solutions are derived based on the limit of small dissipation and dispersion. For a single relaxation mode, the solution depends on whether relaxation alone can support the shock or whether a sub-shock arises controlled by other mechanisms. The resulting shock structures are known as fully dispersed and partly dispersed shocks, respectively. In this paper, the spatial location of the transition between fully dispersed and partly dispersed shocks is identified for shocks propagating above and below the horizontal. This phenomenon is important in understanding the character of sonic booms since the transition to a partly dispersed shock structure leads to the appearance of a shorter scale in the shock rise-time, associated with the embedded sub-shock
Advances in the proposed electromagnetic zero-point field theory of inertia
A NASA-funded research effort has been underway at the Lockheed Martin
Advanced Technology Center in Palo Alto and at California State University in
Long Beach to develop and test a recently published theory that Newton's
equation of motion can be derived from Maxwell's equations of electrodynamics
as applied to the zero-point field (ZPF) of the quantum vacuum. In this
ZPF-inertia theory, mass is postulated to be not an intrinsic property of
matter but rather a kind of electromagnetic drag force that proves to be
acceleration dependent by virtue of the spectral characteristics of the ZPF.
The theory proposes that interactions between the ZPF and matter take place at
the level of quarks and electrons, hence would account for the mass of a
composite neutral particle such as the neutron. An effort to generalize the
exploratory study of Haisch, Rueda and Puthoff (1994) into a proper
relativistic formulation has been successful. Moreover the principle of
equivalence implies that in this view gravitation would also be electromagnetic
in origin along the lines proposed by Sakharov (1968). With regard to exotic
propulsion we can definitively rule out one speculatively hypothesized
mechanism: matter possessing negative inertial mass, a concept originated by
Bondi (1957) is shown to be logically impossible. On the other hand, the linked
ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of
manipulation of inertia and gravitation, since both are postulated to be
electromagnetic phenomena. It is hoped that this will someday translate into
actual technological potential. A key question is whether the proposed
ZPF-matter interactions generating the phenomenon of mass might involve one or
more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no
figure
Cross-National Logo Evaluation Analysis: An Individual Level Approach
The universality of design perception and response is tested using data collected from ten countries: Argentina, Australia, China, Germany, Great Britain, India, the Netherlands, Russia, Singapore, and the United States. A Bayesian, finite-mixture, structural-equation model is developed that identifies latent logo clusters while accounting for heterogeneity in evaluations. The concomitant variable approach allows cluster probabilities to be country specific. Rather than a priori defined clusters, our procedure provides a posteriori cross-national logo clusters based on consumer response similarity. To compare the a posteriori cross-national logo clusters, our approach is integrated with Steenkamp and Baumgartner’s (1998) measurement invariance methodology. Our model reduces the ten countries to three cross-national clusters that respond differently to logo design dimensions: the West, Asia, and Russia. The dimensions underlying design are found to be similar across countries, suggesting that elaborateness, naturalness, and harmony are universal design dimensions. Responses (affect, shared meaning, subjective familiarity, and true and false recognition) to logo design dimensions (elaborateness, naturalness, and harmony) and elements (repetition, proportion, and parallelism) are also relatively consistent, although we find minor differences across clusters. Our results suggest that managers can implement a global logo strategy, but they also can optimize logos for specific countries if desired.adaptation;standardization;Bayesian;international marketing;design;Gibbs sampling;concomitant variable;logos;mixture models;structural equation models
Reliable scalable symbolic computation: The design of SymGridPar2
Symbolic computation is an important area of both Mathematics and Computer Science, with many large computations that would benefit from parallel execution. Symbolic computations are, however, challenging to parallelise as they have complex data and control structures, and both dynamic and highly irregular parallelism. The SymGridPar framework (SGP) has been developed to address these challenges on small-scale parallel architectures. However the multicore revolution means that the number of cores and the number of failures are growing exponentially, and that the communication topology is becoming increasingly complex. Hence an improved parallel symbolic computation framework is required.
This paper presents the design and initial evaluation of SymGridPar2 (SGP2), a successor to SymGridPar that is designed to provide scalability onto 10^5 cores, and hence also provide fault tolerance. We present the SGP2 design goals, principles and architecture. We describe how scalability is achieved using layering and by allowing the programmer to control task placement. We outline how fault tolerance is provided by supervising remote computations, and outline higher-level fault tolerance abstractions.
We describe the SGP2 implementation status and development plans. We report the scalability and efficiency, including weak scaling to about 32,000 cores, and investigate the overheads of tolerating faults for simple symbolic computations
Detection of a supervoid aligned with the cold spot of the cosmic microwave background
We use the WISE-2MASS infrared galaxy catalogue matched with Pan-STARRS1 (PS1) galaxies to search for a supervoid in the direction of the cosmic microwave background (CMB) cold spot (CS). Our imaging catalogue has median redshift z ≃ 0.14, and we obtain photometric redshifts from PS1 optical colours to create a tomographic map of the galaxy distribution. The radial profile centred on the CS shows a large low-density region, extending over tens of degrees. Motivated by previous CMB results, we test for underdensities within two angular radii, 5°, and 15°. The counts in photometric redshift bins show significantly low densities at high detection significance, ≳5σ and ≳6σ, respectively, for the two fiducial radii. The line-of-sight position of the deepest region of the void is z ≃ 0.15–0.25. Our data, combined with an earlier measurement by Granett, Szapudi & Neyrinck, are consistent with a large Rvoid = (220 ± 50) h−1 Mpc supervoid with δm ≃ −0.14 ± 0.04 centred at z = 0.22 ± 0.03. Such a supervoid, constituting at least a ≃3.3σ fluctuation in a Gaussian distribution of the Λ cold dark matter model, is a plausible cause for the CS
Effect of pre-cardiac and adult stages of Dirofilaria immitis in pulmonary disease of cats: CBC, bronchial lavage cytology, serology, radiographs, CT images, bronchial reactivity, and histopathology
AbstractA controlled, blind study was conducted to define the initial inflammatory response and lung damage associated with the death of precardiac stages of Dirofilaria immitis in cats as compared to adult heartworm infections and normal cats. Three groups of six cats each were used: UU: uninfected untreated controls; PreS I: infected with 100 D. immitis L3 by subcutaneous injection and treated topically with selamectin 32 and 2 days pre-infection and once monthly for 8 months); IU: infected with 100 D. immitis L3 and left untreated. Peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected from all cats on Days 0, 70, 110, 168, and 240. CT images were acquired on Days 0, 110, and 240. Cats were euthanized, and necropsies were conducted on Day 240 to determine the presence of heartworms. Bronchial rings were collected for in vitro reactivity. Lung, heart, brain, kidney, and liver tissues were collected for histopathology. Results were compared for changes within each group. Pearson and Spearman correlations were performed for association between histologic, radiographic, serologic, hematologic and bronchoalveolar lavage (BAL) results. Infected cats treated with selamectin did not develop radiographically evident changes throughout the study, were heartworm antibody negative, and were free of adult heartworms and worm fragments at necropsy. Histologic lung scores and CT analysis were not significantly different between PreS I cats and UU controls. Subtle alveolar myofibrosis was noted in isolated areas of several PreS I cats and an eosinophilic BAL cytology was noted on Days 75 and 120. Bronchial ring reactivity was blunted in IU cats but was normal in PreS I and UU cats. The IU cats became antibody positive, and five cats developed adult heartworms. All cats with heartworms were antigen positive at one time point; but one cat was antibody positive, antigen negative, with viable adult females at necropsy. The CT revealed early involvement of all pulmonary arteries and a random pattern of parenchymal disease with severe lesions immediately adjacent to normal areas. Analysis of CT 3D reconstruction and Hounsfield units demonstrated lung disease consistent with restrictive pulmonary fibrosis with an interstitial infiltrate, absence of air trapping, and decrease in total lung volume in Group IU as compared to Groups UU and PreS I. The clinical implications of this study are that cats pretreated with selamectin 1 month before D. immitis L3 infection did not become serologically positive and did not develop pulmonary arterial hypertrophy and myofibrosis
Query-Based Multicontexts for Knowledge Base Browsing: An Evaluation
In [7], we introduced the query-based multicontext theory, which allows to define a virtual space of views on ontological data. Each view is then materialised as a formal context. While this formal context can be visualised in a usual formal concept analysis framework such as Conexp or ToscanaJ, [7] also briefly described how the approach allowed the creation of a novel navigation framework for knowledge bases. The principle of this navigation is based on supporting the user in defining pertinent views. The purpose of this article is to discuss the benefits of the browsing interface. This discussion is performed, on the one hand, by comparing the approach to other Formal Concept Analysis based frameworks. On the other hand, it exposes the preliminary evaluation of the visualisation of formal contexts by comparing the display of a lattice to two other approaches based on trees and graphs
- …