346 research outputs found

    Seasonal Variation in Diurnal Atmospheric Grass Pollen Concentration Profiles

    Get PDF
    In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods of the pollen season. Pollen concentrations are also influenced by meteorological factors – directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season in Aarhus – a twin peak profile during the early season, a single evening profile during the middle of the season, and a single midday peak during the late season. Whilst this variation could not be explained by meteorological factors, no inconsistencies were found with the theory that it was driven by a succession of different grass species with different diurnal flowering patterns dominating atmospheric pollen loads as the season progressed. The potential for exposure was found to be significantly greater during the late-season period than during either the early- or mid-season periods

    Higgs phenomenology of supersymmetric economical 3-3-1 model

    Get PDF
    We explore the Higgs sector in the supersymmetric economical 3-3-1 model and find new features in this sector. The charged Higgs sector is revised i.e., in difference of the previous work, the exact eigenvalues and states are obtained without any approximation. In this model, there are three Higgs bosons having masses equal to that of the gauge bosons--the W and extra X and Y. There is one scalar boson with mass of 91.4 GeV, which is closed to the ZZ boson mass and in good agreement with present limit: 89.8 GeV at 95% CL. The condition of eliminating for charged scalar tachyon leads to splitting of VEV at the first symmetry breaking, namely, www \simeq w^\prime. The interactions among the standard model gauge bosons and scalar fields in the framework of the supersymmetric economical 3-3-1 model are presented. From these couplings, at some limit, almost scalar Higgs fields can be recognized in accordance with the standard model. The hadronic cross section for production of the bilepton charged Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 35.8 fb.Comment: 33 pages, 1 figur

    The TeraGyroid Experiment

    Get PDF
    The TeraGyroid experiment at SC 03 addressed a large-scale problem of genuine scientific interest at the same time as showing how intercontinental grids enable new paradigms for collaborative computational science that can dramatically reduce the time to insight. TeraGyroid used computational steering to accelerate the exploration of parameter space in condensed matter simulations. The scientific objective was to study the self-assembly, defect pathways and dynamics of liquid crystalline cubic gyroid mesophases using the largest set of lattice-Boltzmann (LB) simulations ever performed, involving in some cases lattices of over one billion sites and for highly extended simulation times. We describe the application in sufficient detail to reveal how it uses the grid to support interactions between its distributed parts, where the interfaces exist between the application and the middleware infrastructure, what grid services and capabilities are used, and why important design decisions were made. We also describe how the resources of highend computing services were federated with the UK e-Science Grid and the US TeraGrid to form the TeraGyroid testbed, and summarise the lessons learned during the experiment

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity η<1.0|\eta|<1.0 and at forward rapidity 2.1<η<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    Effect of event selection on jetlike correlation measurement in d+Au collisions at sNN=200 GeV

    Get PDF
    AbstractDihadron correlations are analyzed in sNN=200 GeV d+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions

    J/ψ polarization in p+p collisions at s=200 GeV in STAR

    Get PDF
    AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models

    Beam-energy Dependence Of Charge Balance Functions From Au + Au Collisions At Energies Available At The Bnl Relativistic Heavy Ion Collider

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at sNN=7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at sNN=2.76TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at sNN=7.7 GeV implies that a QGP is still being created at this relatively low energy. © 2016 American Physical Society.942CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoMinistry of Education and Science of the Russian FederationMOE, Ministry of Education of the People's Republic of ChinaMOST, Ministry of Science and Technology of the People's Republic of ChinaNRF-2012004024, National Research FoundationNSF, National Stroke FoundationConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    K(892)0K^{\star}(892)^{0} Production in Relativistic Heavy Ion Collisions at sNN=130\sqrt{s_{_{NN}}}=130 GeV

    Full text link
    We report the first observation of K(892)0πKK^{\star}(892)^{0}\to\pi K in relativistic heavy ion collisions. The transverse momentum spectrum of (K0+Kˉ0)/2(K^{\star0}+\bar{K}^{\star0})/2 from central Au+Au collisions at sNN=130\sqrt{s_{_{NN}}}=130 GeV is presented. The ratios of the K0K^{\star0} yield derived from these data to the yields of negative hadrons, charged kaons, and ϕ\phi mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable e+ee^{+}e^{-}, pppp, and pˉp\bar{p}p results. The data indicate no dramatic reduction of K0K^{\star0} production in relativistic heavy ion collisions despite expected losses due to rescattering effects.Comment: 6 pages, 3 figures, To be published in PRC
    corecore