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Abstract

We explore the Higgs sector in the supersymmetric economical 3–3–1 model and find new features in this
sector. The charged Higgs sector is revised, i.e., in difference of the previous work, the exact eigenvalues and
states are obtained without any approximation. In this model, there are three Higgs bosons having masses
equal to that of the gauge bosons—the W and extra X and Y . There is one scalar boson with mass of
91.4 GeV, which is closed to the Z boson mass and in good agreement with present limit: 89.8 GeV at 95%
CL. The condition of eliminating for charged scalar tachyon leads to splitting of VEV at the first symmetry
breaking, namely, w � w′. The interactions among the Standard Model gauge bosons and scalar fields in the
framework of the supersymmetric economical 3–3–1 model are presented. From these couplings, at some
limit, almost scalar Higgs fields can be recognized in accordance with the Standard Model. The hadronic
cross section for production of the bilepton charged Higgs boson at the CERN LHC in the effective vector
boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 35.8 fb.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recent neutrino experimental results [1–3] establish the fact that neutrinos have masses and
the Standard Model (SM) must be extended. The generation of neutrino masses is thus an impor-
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tant issue in any realistic extension of the SM. In general, the values of these masses which are of
the order of, or less than, 1 eV needed to explain all neutrino oscillation data are not enough to put
strong constraints on model building. It means that several models can induce neutrino masses
and mixing compatible with experimental data. In such cases it is more useful to consider in any
particular model motivation other than that can explain neutrino masses. In addition, although the
SM is exceedingly successful in describing charged leptons, quarks and their interactions, it is
not considered as the ultimate theory since neither the fundamental parameters, masses and cou-
plings, nor the symmetry pattern are predicted. These elements are merely built into the model.
Likewise, the spontaneous electroweak symmetry breaking is simply parametrized by a single
Higgs doublet field.

The embedding of the model into a more general framework is therefore expected. If the
Higgs boson is light, the SM can naturally be embedded in a grand unified theory. The large
energy gap between the low electroweak scale and the high grand unification scale can be sta-
bilized by a supersymmetry (SUSY) transforming bosons into fermions and vice versa [4]. The
existence of such a non-trivial extension is highly constrained by theoretical principles and ac-
tually provides the link between the experimentally explored interactions at electroweak energy
scales and physics at scales close to the Planck scale Mpl ≈ 1019 GeV where gravity is important.
One of the intriguing features of the supersymmetric models is that the Higgs spectrum is quite
constrained. This statement is consolidated by our analysis below.

On the other hand, the possibility of a gauge symmetry based on SU(3)C ⊗ SU(3)L ⊗ U(1)X
(3–3–1) [5–7] is particularly interesting, because it explains some fundamental questions that are
eluded in the SM. The main motivations to study this kind of model are:

(1) The family number must be multiple of three;
(2) It solves the strong CP problem;
(3) It is the simplest model that includes bileptons of both types: scalar and vectors ones;
(4) The model has several sources of CP violation;
(5) The explanation of electric charge quantization [8].

In one of 3–3–1 models [7], the anomaly-free particle content is given by

LaL = (
νa, la, ν

c
a

)T

L
∼ (1,3,−1/3), laR ∼ (1,1,−1), a = 1,2,3,

Q1L = (u1, d1, u
′)TL ∼ (3,3,1/3),

QαL = (dα,−uα, d ′
α)TL ∼ (

3,3∗,0
)
, α = 2,3,

uiR ∼ (3,1,2/3), diR ∼ (3,1,−1/3), i = 1,2,3,

u′
R ∼ (3,1,2/3), d ′

αR ∼ (3,1,−1/3),

where the values in the parentheses denote quantum numbers based on the (SU(3)C,SU(3)L,

U(1)X) symmetry. The exotic quarks u′ and d ′
α take the same electric charges as of the usual

quarks, i.e., qu′ = 2/3, qd ′
α

= −1/3. The spontaneous symmetry breaking is achieved by two
Higgs scalar triplets only

χ = (
χ0

1 , χ−, χ0
2

)T ∼ (1,3,−1/3), ρ = (
ρ+

1 , ρ0, ρ+
2

)T ∼ (1,3,2/3)

with all the neutral components χ0
1 , χ0

2 and ρ0 developing the vacuum expectation values
(VEVs). Such a scalar sector is minimal, therefore it has been called the economical 3–3–1
model [9,10].
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In a series of papers, we have developed and proved that this version is consistent, realistic
and very rich in physics. Let us remind some steps in the development: The general Higgs sector
is very simple and consists of three physical scalars (two neutral and one charged) and eight
Goldstone bosons—the needed number for massive gauge ones [11]. In Refs. [12,13], we have
shown that the model under the consideration is realistic, by the mean that, at the one-loop level,
all fermions gain consistent masses. It was shown that [11] the economical 3–3–1 model does
not furnish any candidate for self-interaction dark matter. This directly relates to the scalar sector
in which a significant number of fields and couplings is reduced. With a larger field content in
order to provide candidates for dark matter, the supersymmetric version of the economical 3–3–1
model has already been constructed in Ref. [14].

It is well known that the electroweak symmetry breaking in the SM is achieved via the Higgs
mechanism. In the Glashow–Weinberg–Salam model there is a single complex Higgs doublet,
where the Higgs boson h is the physical neutral Higgs scalar which is the only remaining part of
this doublet after spontaneous symmetry breaking. In the extended models there are additional
charged and neutral scalar Higgs particles. The prospects for Higgs coupling measurements at
the CERN LHC have recently been analyzed in detail in Ref. [15]. The experimental detection
of the h will be great triumph of the SM of electroweak interactions and will mark new stage in
high energy physics.

In extended Higgs models, which would be deduced in the low energy effective theory of
new physics models, additional Higgs bosons like charged and CP-odd scalar bosons are pre-
dicted. Unlike the spectrum of squarks, sleptons and gauginos, which are determined by many
parameters, the Higgs spectrum is quite constrained. Phenomenology of these extra scalar bosons
strongly depends on the characteristics of each new physics model. By measuring their properties
like masses, widths, production rates and decay branching ratios, the outline of physics beyond
the electroweak scale can be experimentally determined. In the model under consideration, at
the tree level, the mass lightest Higgs is the mass of the W boson. This is in agreement with the
current experimental limit.

The interesting feature compared with other 3–3–1 models is the Higgs physics. In the 3–
3–1 models, the general Higgs sector is very complicated [16,17] and this prevents the models’
predictability. Thus, the Higgs sector of the supersymmetric version of the 3–3–1 models are
intricate too [18,19]. The Higgs sector of a supersymmetric version of the economical 3–3–1
model is not so complicated and its eigenvalues and states can be found exactly without any
approximation. The scalar sector of the supersymmetric economical 3–3–1 model is a subject of
the present study. As shown, by couplings of the scalar fields with the ordinary gauge bosons
such as the photon, the W and the neutral Z gauge bosons, we are able to identify full content
of the Higgs sector in the SM including the neutral h and the Goldstone bosons eaten by their
associated massive gauge ones. Almost interactions among Higgs-gauge bosons in the Standard
Model are recovered.

The aim of this work is to explore more features of the supersymmetric version of the eco-
nomical 3–3–1 model through the Higgs-gauge boson interactions. In scalar sector of the model,
there exists the singly-charged boson ζ±

4 , which is a subject of intensive current studies (see,
for example, Refs. [20,21]). The trilinear coupling ZW±ζ∓

4 which differs, at the tree level, from
zero only in the models with Higgs triplets, plays a special role on study phenomenology of these
exotic representations. We shall pay particular interest on this boson.

The outline of this paper is as follows. Section 2 is devoted to a brief review of the model. The
scalar fields and mass spectrum is revisited in Section 3 and their couplings with the ordinary
gauge bosons are given in Section 4. Production of the heavy singly charged Higgs boson ζ±
4
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at the CERN LHC are calculated in Section 5. We outline our main results in the last section—
Section 6.

2. A review of the model

In this section we first recapitulate the basic elements of the model [14].

2.1. Particle content

The superfield content in this paper is defined in a standard way as follows

(1)F̂ = (F̃ ,F ), Ŝ = (S, S̃), V̂ = (λ,V ),

where the components F , S and V stand for the fermion, scalar and vector fields while their
superpartners are denoted as F̃ , S̃ and λ, respectively [4,22].

The superfields for the leptons under the 3–3–1 gauge group transform as

(2)L̂aL = (
ν̂a, l̂a, ν̂

c
a

)T

L
∼ (1,3,−1/3), l̂caL ∼ (1,1,1),

where ν̂c
L = (ν̂R)c and a = 1,2,3 is a generation index.

The superfields for the left-handed quarks of the first generation are in triplets

(3)Q̂1L = (û1, d̂1, û
′)TL ∼ (3,3,1/3),

where the right-handed singlet counterparts are given by

(4)ûc
1L, û′ c

L ∼ (
3∗,1,−2/3

)
, d̂c

1L ∼ (
3∗,1,1/3

)
.

Conversely, the superfields for the last two generations transform as antitriplets

(5)Q̂αL = (d̂α,−ûα, d̂ ′
α)TL ∼ (

3,3∗,0
)
, α = 2,3,

where the right-handed counterparts are in singlets

(6)ûc
αL ∼ (

3∗,1,−2/3
)
, d̂c

αL, d̂ ′ c
αL ∼ (

3∗,1,1/3
)
.

The primes superscript on usual quark types (u′ with the electric charge qu′ = 2/3 and d ′ with
qd ′ = −1/3) indicate that those quarks are exotic ones. The mentioned fermion content, which
belongs to that of the 3–3–1 model with right-handed neutrinos [7,10] is, of course, free from
anomaly.

The two superfields χ̂ and ρ̂ are at least introduced to span the scalar sector of the economical
3–3–1 model [11]:

χ̂ = (
χ̂0

1 , χ̂−, χ̂0
2

)T ∼ (1,3,−1/3), ρ̂ = (
ρ̂+

1 , ρ̂0, ρ̂+
2

)T ∼ (1,3,2/3).

To cancel the chiral anomalies of Higgsino sector, the two extra superfields χ̂ ′ and ρ̂′ must be
added as follows

(7)χ̂ ′ = (
χ̂ ′0

1 , χ̂ ′+, χ̂ ′0
2

)T ∼ (
1,3∗,1/3

)
, ρ̂′ = (

ρ̂′−
1 , ρ̂′0, ρ̂′−

2

)T ∼ (
1,3∗,−2/3

)
.

In this model, the SU(3)L ⊗ U(1)X gauge group is broken via two steps:

(8)SU(3)L ⊗ U(1)X
w,w′−→ SU(2)L ⊗ U(1)Y

v,v′,u,u′−→ U(1)Q,
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where the VEVs are defined by

(9)
√

2〈χ〉T = (u,0,w),
√

2〈χ ′〉T = (u′,0,w′),
(10)

√
2〈ρ〉T = (0, v,0),

√
2〈ρ′〉T = (0, v′,0).

The VEVs w and w′ are responsible for the first step of the symmetry breaking while u,u′ and
v, v′ are for the second one. Therefore, they have to satisfy the constraints:

(11)u,u′, v, v′  w,w′.

The vector superfields V̂c , V̂ and V̂ ′ containing the usual gauge bosons are, respectively, asso-
ciated with the SU(3)C , SU(3)L and U(1)X group factors. The color and flavor vector superfields
have expansions in the Gell-Mann matrix bases T a = λa/2 (a = 1,2, . . . ,8) as follows

V̂c

1

2
λaV̂ca,

ˆ̄V c = −1

2
λa∗V̂ca;

(12)V̂ = 1

2
λaV̂a,

ˆ̄V = −1

2
λa∗V̂a,

where an overbar ‘-’ indicates complex conjugation. For the vector superfield associated with
U(1)X , we normalize as follows

(13)XV̂ ′ = (
XT 9)B̂, T 9 ≡ 1√

6
diag(1,1,1).

In the following, we are denoting the gluons by ga and their respective gluino partners by λa
c ,

with a = 1, . . . ,8. In the electroweak sector, V a and B stand for the SU(3)L and U(1)X gauge
bosons with their gaugino partners λa

V and λB , respectively.
The supersymmetric model possesses a full Lagrangian of the form Lsusy + Lsoft, where the

first term is supersymmetric part, whereas the last term breaks explicitly the supersymmetry. We
can find in Ref. [14] for more details on this Lagrangian. In the following, only terms relevant to
our calculations are displayed.

2.2. Gauge bosons

The mass Lagrangian for the gauge bosons is given by

Lgauge
mass = (

Dμ〈ρ〉)+(
Dμ〈ρ〉) + (

Dμ〈χ〉)+(
Dμ〈χ〉)

(14)+ (
D̄μ〈ρ′〉)+(

D̄μ〈ρ′〉) + (
D̄μ〈χ ′〉)+(

D̄μ〈χ ′〉),
where

(15)Dμ = ∂μ + igT aVaμ + ig′XT 9Bμ, D̄μ = ∂μ − igT a∗Vaμ + ig′XT 9Bμ.

Let us define the charged gauge bosons as follows

(16)W ′±
μ ≡ 1√

2
(V1μ ∓ iV2μ), Y ′±

μ ≡ 1√
2
(V6μ ± iV7μ).

The mass matrix of the W ′
μ and Y ′

μ is obtained then

(17)M2
charged = g2

4

(
V 2 + U2 K

K W 2 + V 2

)
,
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where

V 2 ≡ v2 + v′2, W 2 ≡ w2 + w′2, U2 ≡ u2 + u′2 = t2
θ W 2,

(18)K ≡ uw + u′w′ = tθW
2, t ≡ g′/g.

As in the previous work [14], we have used

(19)tθ ≡ u

w
= u′

w′ ,

and sθ ≡ sin θ , tθ ≡ tan θ , and so forth.
The physical gauge bosons are the SM-like W± and new gauge boson Y±:

(20)Wμ = cθW
′
μ − sθY

′
μ, Yμ = sθW

′
μ + cθY

′
μ,

with the respective masses:

(21)m2
W = g2

4
V 2, m2

Y = g2

4

(
V 2 + U2 + W 2).

Therefore, the θ is the mixing angle of W ′ − Y ′, which is the same as in the case of non-
supersymmetric model [10]. Because of the constraint (11), the mass of W boson is identified
with those of the SM, that is

(22)
√

v2 + v′2 ≡ vweak = 246 GeV.

For the remaining gauge vectors (V3,V8,B,V4,V5), the mass matrix in this basis is given by

(23)M2
neutral =

(
M2

mixing 0

0 M2
V5

)
,

where V5 is decoupled with the mass

(24)M2
V5

≡ g2

4

(
W 2 + U2),

while the mixing part M2
mixing of (V3,V8,B,V4) is equal to

(25)
g2

4

⎛
⎜⎜⎜⎜⎝

U2 + V 2 1√
3
(U2 − V 2) − 2t

3
√

6
(U2 + 2V 2) K

1
3 (V 2 + U2 + 4W 2)

√
2t
9 (2V 2 + 2W 2 − U2) − 1√

3
K

2t2

27 (4V 2 + U2 + W 2) − 4t

3
√

6
K

U2 + W 2

⎞
⎟⎟⎟⎟⎠ .

As in the non-supersymmetric version, it can be checked that the matrix (25) contains two exact
eigenvalues, the photon Aμ and new V ′

4μ ∼ V4μ, such as

(26)M2
γ = 0, M2

V ′
4
= g2

4

(
U2 + W 2).

Due to the fact that V ′
4 and V5 gain the same mass [cf. (26) and (24)], it is worth noting that these

boson vectors have to be combined to produce the following physical state [10]

(27)X0
μ ≡ 1√

2
(V ′

4μ − iV5μ),
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with the mass

(28)m2
X = g2

4

(
U2 + W 2).

Combining Eqs. (21) and (28), as in the non-symmetric version, we get the law of Pythagoras

(29)M2
Y = M2

X + M2
W .

The eigenvectors of (25) are the same in Ref. [10] of the non-supersymmetric version with unique
replacement of u,v,w by U,V,W (for details, see [14]). It is worth noting that because of the
relation (19), the above diagonalization was eased. For convenience in reading further the mixing
matrix of the neutral gauge bosons is given as follows

(30)(V3,V8,B,V4)
T = U(A,Z,Z′,V ′

4)
T ,

where U is given in appendix of Ref. [10].
To finish this section, we mention again that the imaginary part of the non-Hermitian bilep-

ton X0 is decoupled, while its real part has the mixing among the neutral Hermitian gauge bosons
such as, the photon, the neutral Z and the extra Z′.

3. The Higgs sector revisited

The supersymmetric Higgs potential takes the form [14]

Vsusyeco ≡ Vscalar + Vsoft

= μ2
χ

4

(
χ†χ + χ ′†χ ′) + μ2

ρ

4

(
ρ†ρ + ρ′†ρ′)

+ g′2

12

(
−1

3
χ†χ + 1

3
χ ′†χ ′ + 2

3
ρ†ρ − 2

3
ρ′†ρ′

)2

+ g2

8

(
χ

†
i λb

ijχj − χ
′†
i λ∗b

ij χ ′
j + ρ

†
i λb

ij ρj − ρ
′†
i λ∗b

ij ρ′
j

)2

(31)+ m2
ρρ†ρ + m2

χχ†χ + m2
ρ′ρ′†ρ′ + m2

χ ′χ ′†χ ′.

Assuming that the VEVs of neutral components u,u′, v, v′,w and w′ are real, we expand the
fields around the VEVs as follows

χT =
(

u + S1 + iA1√
2

, χ−,
w + S2 + iA2√

2

)
, ρT =

(
ρ+

1 ,
v + S5 + iA5√

2
, ρ+

2

)
,

(32)

χ ′T =
(

u′ + S3 + iA3√
2

, χ ′+,
w′ + S4 + iA4√

2

)
, ρ′T =

(
ρ′−

1 ,
v′ + S6 + iA6√

2
, ρ′−

2

)
.

Requirement of vanishing the linear terms in fields, we get, at the tree-level approximation, the
following constraint equations

μ2
χ + 4m2

χ = −g′2

54

[
w2 − w′2 + u2 − u′2 + 2

(
v′2 − v2)]

− g2 [
2
(
u2 − u′2 + w2 − w′2) + v′2 − v2],
6
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μ2
ρ + 4m2

ρ = −2g2 ′ + 9g2

54

[
2
(
v2 − v2 ′) + w2 ′ − w2 + u′2 − u2],

m2
χ + m2

χ ′ + μ2
χ = 0, m2

ρ + m2
ρ ′ + μ2

ρ = 0,

(33)
(
w2 − u2)u′w′ = (

w′2 − u′2)uw.

It is noteworthy that Eq. (33) implies the matching condition previously mentioned in (19). Con-
sequently, the model contains a pair of Higgs triplet χ and antitriplet χ ′ with the VEVs in top
and bottom elements governed by the relation: u/w = u′/w′.

The squared-mass matrix derived from (31) can be divided into three 6×6 matrices respective
to the charged, scalar and pseudoscalar bosons. Note that there is no mixing among the scalar
and pseudoscalar bosons.

3.1. Pseudoscalar sector

(1) There are two decoupled massless particles: A5,A6.
(2) Three massless states are mixing of

(34)A′
1 = sβA1 − cβA3, A′

2 = sβA2 − cβA4, ϕA = sθA
′
3 + cθA

′
4,

where

(35)A′
3 = cβA1 + sβA3, A′

4 = cβA2 + sβA4,

with

(36)tβ ≡ w

w′ .

(3) One massive eigenstate,

(37)φA = cθA
′
3 − sθA

′
4,

with mass is equal to those of the X bilepton [14]

(38)m2
φA

= g2

4

(
1 + t2

θ

)(
w2 + w′2) = m2

X.

Hence, in the pseudoscalar sector, we get five Goldstone bosons: A5, A6, A′
1, A′

2, ϕA and one
massive φA having the mass equal to those of the bilepton X.

3.2. Scalar sector

In this sector, six particles are mixing in terms of a 6 × 6 squared-mass matrix. To study
physical eigenvalues and eigenstates, we change the basis to such (S′

1, S
′
2, S

′
3, S

′
4, S

′
5, S

′
6) as

(39)

⎛
⎜⎜⎜⎜⎜⎝

S1
S2
S3
S4
S5
S6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sθ −cθ 0 0 0 0
cθ sθ 0 0 0 0
0 0 sθ −cθ 0 0
0 0 cθ sθ 0 0
0 0 0 0 v′√

v2+v′2

−v√
v2+v′2

0 0 0 0 v√
v2+v′2

v′√
v2+v′2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S′
1

S′
2

S′
3

S′
4

S′
5

S′
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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For using further, we just introduce the following notation

(40)

⎛
⎝S′

1a

S′
3a

S′
6a

⎞
⎠ =

(
cβ sβ 0

−sβ cβ 0
0 0 1

)⎛
⎝S′

1

S′
3

S′
6

⎞
⎠ .

With these combinations, we get the physical fields as follows:

(1) Three massless fields: S′
5, S

′
1a , and

(41)ϕS24 = sβS′
2 + cβS′

4.

(2) Three massive fields corresponding to the masses:

(42)φS24 = cβS′
2 − sβS′

4, m2
φS24

= g2

4

(
1 + t2

θ

)(
w2 + w′2) = m2

X,

ϕSa36 = sαS′
3 + cαS′

6,

(43)m2
ϕSa36

= 1

2

[
m2

33a + m2
66a −

√(
m2

33a − m2
66a

)2 + 4m4
36a

]
,

φSa36 = cαS′
3 − sαS′

6,

m2
φSa36

= 1

2

[
m2

33a + m2
66a +

√(
m2

33a − m2
66a

)2 + 4m4
36a

]
,

where

m2
33a = 18g2 + g′2

54c2
θ

(
w2 + w′2), m2

66a = 9g2 + 2g′2

27

(
v2 + v′2),

m2
36a = (9g2 + 2g′2)

√
(v2 + v′2)(w2 + w′2)

54cθ

and

(44)t2α ≡ −2m2
36a

m2
66a − m2

33a

.

From (43), we get

(45)m2
ϕSa36

� h1h2 − h2
3

h1

(
v2 + v′2),

where

h1 ≡ 18g2 + g′2

54c2
θ

, h2 ≡ 9g2 + 2g′2

27
, h3 ≡ 9g2 + 2g′2

54c2
θ

.

Taking into account α = e2

4π
= 1

128 , s2
W = 0.2312, t = g′

g
= 3

√
2sW√

4c2
W −1

[23] we have

(46)mϕSa36
� 91.4 GeV.

This value is very closed to the lower limit of 89.8 GeV (95% CL) given in Ref. [24, p. 32]. It is
interesting to note that this mass is also closed to the Z boson mass.

Let us note that φA and φS24 have the same mass, which can be combined to become a
physical neutral complex field H 0

X = (φS24 + iφA)/
√

2 with mass equal to mX of the neutral
non-Hermitian gauge boson X0.
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3.3. Charged Higgs sector

In Ref. [14], to solve the characteristic equation for charged Higgs sector, we had to use the
approximation (11). In this sector we are revising the previous work. Our result below is exact
without any approximation.

In the base of (χ+
a ,χ ′+

a , ρ+
1a, ρ

+
2a, ρ

′+
1a , ρ′+

2a ), the mass matrix becomes [14]

(47)M2
a6 charged = g2

4

⎛
⎜⎜⎜⎜⎜⎜⎝

m2
a11 m2

a12 0 m2
a14 0 m2

a16
m2

a22 0 0 0 0
v′2 0 −vv′ 0

m2
a44 0 −vv′

v2 0
m2

a66

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

m2
a11 = −c2β

(
cot2γ −1

)
v′2, m2

a12 = −s2β

(
cot2γ −1

)
v′2,

m2
a22 = c2β

(
cot2γ −1

)
v′2 + (

1 + t2
β

)(
1 + t2

θ

)
w′2,

m2
a14 =

√(
1 + t2

β

)(
1 + t2

θ

)
w′v, m2

a16 =
√(

1 + t2
β

)(
1 + t2

θ

)
w′v′,

m2
a44 = (

t2
β − 1

)(
t2
θ + 1

)
w′2 + v′2, m2

a66 = −(
t2
β − 1

)(
t2
θ + 1

)
w′2 + v2,

with

(48)cotγ ≡ v

v′ .

Since the block intersected by the third, fifth rows and columns is decoupled, it can be diagonal-
ized and this yields two eigenvalues as follows

(49)m2
�+

2
= 0, m2

�+
1

= g2

4

(
v2 + v′2) = m2

W .

Here the Goldstone boson �+
2 and Higgs boson �+

1 are, respectively, defined by

(50)�+
1 = sγ ρ+

1a − cγ ρ′+
1a , �+

2 = cγ ρ+
1a + sγ ρ′+

1a .

Eq. (49) shows that one charged Higgs boson has the mass equal to those of W boson, i.e., m�±
1

=
mW± . This result is in agreement with the experimental current limit m > 79.3 GeV,CL =
95% [24].

The remaining part of (χ+
a ,χ ′+

a , ρ+
2a, ρ

′+
2a ) is still mixing in terms of a 4×4 submatrix of (47).

This matrix can be diagonalized to get eigenvalues as following

m2
ζ+

1
= 0,

(51)m2
ζ+

2
= g2

4

[(
t2
β − 1

)(
u′2 + w′2) − (

cot2γ −1
)
v′2],

(52)m2
ζ+

3
= −m2

ζ+
2

,

(53)m2
ζ+

4
= g2

4

(
U2 + V 2 + W 2) = m2

Y
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and the corresponding eigenvalues

ζ+
1 =

√
(t2

β + 1)(u′2 + w′2)√
4m2

ϑ
+
4

g2

χ+
a − v√

4m2
ϑ

+
4

g2

ρ+
2a − v′√

4m2
ϑ

+
4

g2

ρ′+
2a ,

ζ+
2 = 1√

u′2 + w′2 + v2

[
1√

1 + t2
β

(
vχ+

a + tβvχ ′+
a

) +
√

u′2 + w′2ρ+
2a

]
,

ζ+
3 = 1√

v′2 + w2 + u2

[
v′√

1 + t2
β

(
tβχ+

a − χ ′+
a

) +
√

u2 + w2ρ′+
2a

]
,

ζ+
4 = 1√

k2
1 + k2

2 + k2
2 + 1

(
k1χ

+
a + k2χ

′+
a + k3ρ

+
2a + ρ′+

2a

)
,

where

k1 ≡ − (t2
βv2 − v′2)

√
u′2 + w′2

v′
√

1 + t2
β(u′2 + v2 + w′2)

,

k2 ≡
√

u2 + w2[v2 + v′2 + (1 + t2
β)(u2 ′ + w2 ′)]

v′
√

1 + t2
β(u′2 + w2 ′ + v2)

,

k3 ≡ − v(v′2 + u2 + w2)

v′(u′2 + w′2 + v2)
.

As in the gauge boson sector, from (42), (49) and (53), we get again the law of Pythagoras

(54)m2
ζ+

4
= m2

H 0
X

+ m2
�+

1
.

It is easy to check that the physical field ζ+
1 is Goldstone bosons and charged Higgs boson ζ4

has the mass equal to those of Y . This matrix also gives us two physical fields ζ+
2 and ζ+

3 with
their mass are the same value but opposite sign. Therefore, one of them can be identified with
tachyon fields.

From (51) and (52), to cancel the tachyon field, we have to put the condition

(55)
(
t2
β − 1

)(
u′2 + w′2) − (

cot2γ −1
)
v′2 = 0.

This yields

(56)1 + u′2

w′2
= v2 − v′2

w2 − w′2
.

This means that in the limit w′ � u′, we have the splitting formula

(57)w2 − w′2 = v2 − v′2 � 2462 GeV2.

It is noteworthy that the relation (57) is very good addition to (29). In particular notice that,
the condition of eliminating tachyon fields (55) does not violate minimum of Higgs potential.
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The above condition of tachyon eliminating means that the minimum is non-trivial. The same
conclusion has been happened for positivity of m2

H± in the MSSM [25].
Finally, let us summarize the physical fields of the scalar sector in the model. There are eight

neutral massless particles: five pseudoscalars A5, A6, A′
1, A′

2, ϕA, and three scalars S′
5, ϕS24 , S′

1a .
There is one complex neutral Higgs H 0

X with mass equal to those of the bilepton mX , and two
massive scalars ϕSa36 , φSa36 . There are four charged massless scalar fields �±

2 , ζ±
1 , ζ±

2 and �±
3 ,

and two massive charged bosons �±
1 and ζ±

4 with masses equal to that of the W boson and the
bilepton Y , respectively: m�+

1
= mW , mζ+

4
= mY .

The masses of Higgs bosons given in this section is the tree level ones. At one-loop level, be-
sides contributions from the non-supersymmetric version, we have additional loops with sfermi-
ons, Higgsino-gaugino, fermion-Higgsino and tadpoles of sfermions. We do hope that, LHC will
discovery long-waiting Higgs bosons and then we can fix more free parameters. Radiative cor-
rections to masses of the main Higgs bosons will be our next study.

4. Higgs-gauge boson couplings

With above content of Higgs sector, we can now calculate the Higgs-gauge boson interactions.
These interactions exist in part from

(58)Lkinetic = (
Dμχ

)+
Dμχ + (

Dμρ
)+

Dμρ + (
D̄μχ ′)+

D̄μχ ′ + (
D̄μρ′)+

D̄μρ′.

In this paper, the gauge bosons are limited to be the gauge bosons of Glashow–Weinberg–Salam
model, i.e., photon, W and Z bosons. Using mixing matrices given in Appendix A, we are able
to get interactions of the physical fields.

Despite mixing, electromagnetic interactions are unchanged

(59)ieAμH− ↔
∂μ H+, H− = �−

1 , �−
2 , ζ−

1 , ζ−
2 , ζ−

3 , ζ−
4 .

Formula (59) shows that the scalar Higgs physical states and mixings given in Section 3 are
correct.

For the W boson, we get couplings of pair W+W− with neutral Higgs bosons presented in
Table 1.

The interactions of single W boson with two Higgs bosons are presented in Table 2, where
mx,y, x, y = 1,2,3,4, are given in Appendix A. Other vertices are

V
(
W−�+

1 A5
) = −V

(
W−�+

2 A6
) = gv′

2
√

v2 + v′2
,

V
(
W−�+

2 A5
) = V

(
W−�+

1 A6
) = gv

2
√

v2 + v′2
,

V
(
W−�+

2 S′
5

) = −1

cα

V
(
W−�+

1 ϕSa36

) = 1

sα
V

(
W−�+

1 φSa36

) = − igvv′

v2 + v′2
,

V
(
W−�+

1 S′
5

) = 1

cα

V
(
W−�+

2 ϕSa36

) = −1

sα
V

(
W−�+

2 φSa36

) = ig(v2 − v′2)

v2 + v′2
.

Non-zero quartic couplings of pair W+W− with two Higgs bosons are given in Table 3.
Addition to this table, we have also five interactions
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Table 1
Trilinear couplings of W+W− with neutral Higgs bosons

Vertex Coupling

W+W−S′
5

g2vv′√
v2+v′2

W+W−ϕsa36
g2cα

2
v′2−v2√
v′2+v2

W+W−φsa36 − g2sα
2

v′2−v2√
v′2+v2

Table 2
Trilinear coupling constants of W− with two Higgs bosons

Vertex Coupling

Wμ−ζ+
x

↔
∂μ A′

1 − gw(2m2xuu′+m1x (u2−u′2))

2(u2+u′2)
√

u2+w2
, x = 1,2,3,4

Wμ−ζ+
x

↔
∂μ ϕA − gu2w(m2xu−m1xu′)

2(u2+u′2)(u2+w2)
, x = 1,2,3,4

Wμ−ζ+
x

↔
∂μ A′

2
gu(2m2xuu′+m1x (u2−u′2))

2(u2+u′2)
√

u2+w2
, x = 1,2,3,4

Wμ−ζ+
x

↔
∂μ H 0

X
− ig(−2m1xuu′+m2x (u2−u′2))√

2(u2+u′2)
, x = 1,2,3,4

Wμ−ζ+
x

↔
∂μ ϕS24

ig(2m2xuu′+m1x (u2−u′2))

2(u2+u′2)
, x = 1,2,3,4

Table 3
Non-zero quartic coupling constants of W+W− with Higgs bosons

Vertex Coupling Vertex Coupling

W+W−A′
1A′

2 − g2uw

2(u2+w2)
W+W−ϕSa36φSa36 − g2s2α

4

W+W−A′
1A′

1
g2w2

2(u2+w2)
W+W−A′

2A′
2

g2u2

2(u2+w2)

W+W−A5A5
g2

2 W+W−ϕSa36ϕSa36
g2c2

α
2

W+W−φSa36φSa36
g2s2

α
2 W+W−ζ+

x ζ−
y

g2(m1xm1y+m2xm2y )

2 , x, y = 1,2,3,4

V
(
W+W−A5A5

) = V
(
W+W−A6A6

) = V
(
W+W−S′

5S
′
5

)
= V

(
W+W−H 0

XH 0∗
X

) = V
(
W+W−�+

1 �−
1

) = V
(
W+W−�+

2 �−
2

)
.

For the neutral Z boson, the triple coupling of single Z with two charged Higgs bosons are
presented in Table 4, where U22, . . . are elements in the mixing matrix U of the neutral gauge
bosons. We have also

V
(
Z�−

1 �+
1

) = V
(
Z�−

2 �+
2

)
.

The notations are given by

f1 = u

(
3U12 + √

3

(
U22 − 2sW

√
1

3 − 4s2
W

U32

))
+ 3wU42,

f2 = 3U12 − √
3

(
U22 + 4sW

√
1

3 − 4s2
U32

)
,

W
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Table 4
Trilinear coupling constants of Zμ with two charged Higgs bosons

Vertex Coupling

Zμ�−
1

↔
∂μ �+

1 − ig

6(u2+w2)
{−2

√
3u2(U22 − 2sW

√
1

3−4s2
W

U32) − 6uU42w

+ [3U12 + √
3(U22 + 4sW

√
1

3−4s2
W

U32)]w2}

Zμζ−
x

↔
∂μ �+

1 − ig

2
√

v2+v′2(u2+w2)
(m4xv − m3xv′)[−u2U42 + u(U12 + √

3U22)w + U42w2], x = 1,2,3,4

Zμζ−
x

↔
∂μ �+

2
ig

2
√

v2+v′2(u2+w2)
(m3xv + m4xv′)[−u2U42 + u(U12 + √

3U22)w + U42w2], x = 1,2,3,4

Zμζ−
x

↔
∂μ ζ+

y − ig

6sW (u2+w2)
{(m1ym1x + m2ym2x)[3U12 − √

3(U22 − 2sW

√
1

3−4s2
W

U32)]

× (u2 + w2) + (m3ym3x + m4ym4x)(u2[3U12 + √
3(U22 + 4sW

√
1

3−4s2
W

U32)]

+ 6uwU42 − 2
√

3w2(U22 − 2sW

√
1

3−4s2
W

U32))}, x, y = 1,2,3,4

f3 = −3U2
12 − 2

√
3U12

(
U22 − 2sW

√
1

3 − 4s2
W

U32

)

+ 3U22

(
U22 + 4sW

√
1

3 − 4s2
W

U32

)
,

f4 = 3U2
12 + U2

22 + 8sWU22U32√
3 − 4s2

W

− 16s2
WU2

32

−3 + 4s2
W

− 2
√

3U12

(
U22 + 4s2

W√
3 − 4s2

W

U42

)
,

f5 = 3U2
12 + U2

22 − 4sWU22U32√
3 − 4s2

W

− 4s2
WU2

32

−3 + 4s2
W

− 2
√

3U12

(
−U22 + 2sWU32√

3 − 4s2
W

)
+ 3U2

42,

f6 = 4U2
22 + 8sWU22U32√

3 − 4s2
W

+ 3U2
42 − 4s2

W

−3 + 4s2
W

U2
32,

f7 = 3uU42 − 2
√

3w

(
U22 + sW

√
1

3 − 4s2
W

U32

)
,

f8 = u2
[

3U12 + √
3

(
U22 − 2sW

√
1

3 − 4s2
W

U32

)]
+ 6uwU42

− 2
√

3w2
(

U22 + sW

√
1

3 − 4s2
W

U32

)
.

Similarly, trilinear coupling of the single Z with two neutral Higgs bosons are given in Table 5.
The triple couplings of pair ZZ with one scalar Higgs boson are given in Table 6, where

a1 = (
a2

11 + U2
42

)
u + (a11 + a33)U42w, a2 = (

a2
33 + U2

42

)
w + (a11 + a33)U42u,

a3 = (
a2

11 + U2
42

)
u′ − (a11 + a33)U42w

′, a4 = (
a2

33 + U2
42

)
w′ − (a11 + a33)U42u

′,

a11 = U12 + 1√ U22 − t√
√

2
U32, a33 = − 2√ U22 − t√

√
2
U32.
3 3 3 3 3 3
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Table 5
Trilinear couplings of Zμ with two neutral Higgs bosons

Vertex Coupling Vertex Coupling

ZμA′
1

↔
∂μ S′

1a
− guu′

3(u2+u′2)
√

u2+w2
f1 ZμA′

2

↔
∂μ S′

1a
− guu′

3(u2+u′2)
√

u2+w2
f7

ZμϕA

↔
∂μ S′

1a
g(u2−u′2)

6(u2+u′2)(u2+w2)
f8 ZμA5

↔
∂μ ϕSa36 − gvcα

6
√

v2+v′2
f2

ZμA6
↔
∂μ ϕSa36 − gv′cα

6
√

v2+v′2
f2 ZμA′

2

↔
∂μ ϕSa36

gsα(u2−u′2)

6(u2+u′2)
√

u2+w2
f7

ZμA′
1

↔
∂μ ϕSa36

gsα(u2−u′2)

6(u2+u′2)
√

u2+w2
f1 ZμϕA

↔
∂μ ϕSa36

gsαuu′
3(u2+u′2)(u2+w2)

f8

ZμA5
↔
∂μ S′

5
gv′

6
√

v2+v′2
f2 ZμA6

↔
∂μ S′

5 − gv

6
√

v2+v′2
f2

ZμA5
↔
∂μ φSa36

gvsα

6
√

v2+v′2
f2 ZμA6

↔
∂μ φSa36

gv′sα
6
√

v2+v′2
f2

ZμA′
1

↔
∂μ φSa36

gcα(u2−u′2)

6(u2+u′2)
√

u2+w2
f1 ZμA′

2

↔
∂μ φSa36

gcα(u2−u′2)

6(u2+u′2)
√

u2+w2
f7

ZμA′
1

↔
∂μ ϕS24

g

6
√

u2+w2
[−3uU42 + (3U12

+ √
3(U22 − 2sW

√
1

3−4s2
W

U32))w]
ZμϕA

↔
∂μ φSa36

gcαuu′
3(u2+u′2)(u2+w2)

f8

ZμA′
2

↔
∂μ ϕS24

g

6
√

u2+w2
[2√

3u(U22

+ sW

√
1

3−4s2
W

U32) + 3wU42]

Table 6
Trilinear coupling constants of ZZ with one scalar bosons

Vertex Coupling

ZZS′
5

g2vv′
3
√

v2+v′2
f4

ZZS′
1a

g2u′
3
√

u2+u′2
√

u2+w2
(u2f5 + 2uwU42 + w2f6)

ZZϕS24
g2

√
u2+u′2

6u
√

u2+w2
[(u2 − w2)U42f2 + uwf3]

ZZϕSa36
g2

4 {[−(a1sθ + a2cθ )sβ + (a3sθ + a4cθ )cβ ]sα + v′−v√
v2+v′2

cα}
ZZφSa36

g2

4 {[−(a1sθ + a2cθ )sβ + (a3sθ + a4cθ )cβ ]cα − v′−v√
v2+v′2

sα}

Non-zero quartic couplings of pair ZZ with two scalar Higgs bosons are given in Table 7.
Non-zero quartic of pair ZZ with two charged Higgs bosons are presented in Table 8.
Another interaction is

V(ZZρ1ρ1) = V(ZZρ2ρ2).

In the special limit

(60)u = u′, w = w′, v′ = 0, w,w′ � u,u′, v, v′,

the effective couplings are summarized in Table 9. From (50) and Appendix C we get the follow-
ing limit for physical fields

(61)S5 → −ϕSa36, ρ+
1 → −�+

2 .
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Table 7
Non-zero quartic coupling constants of ZZ with two neutral scalar bosons

Vertex Coupling

ZZA′
1A′

2
g2

6 U42f2

ZZA′
1A′

1
g2

6 f5

ZZA′
2A′

2
g2

6 f6

ZZHH
g2

6 f4,H = S′
5,A5,A6

ZZS′
1a

ϕS24
g2uu′

3(u2+u′2)+(u2+w2)
[(u2 − w2)U42f2 + uwf3]

ZZϕS24φSa36 − g2cα(u2−u′2)

6(u2+u′2)+(u2+w2)
[(u2 − w2)U42f2 + uwf3]

ZZϕS24ϕSa36 − g2sα(u2−u′2)

6(u2+u′2)+(u2+w2)
[(u2 − w2)U42f2 + uwf3]

ZZS′
1a

S′
1a

g2

6(u2+w2)
(u2f5 + 2uwU42f2 + w2f6)

ZZϕS24ϕS24
g2

6(u2+w2)
(u2f6 − 2uwU42f2 + w2f5)

ZZH 0
X

H 0∗
X

g2

6(u2+w2)
(u2f6 − 2uwU42f2 + w2f5)

ZZϕSa36ϕSa36
g2

6(u2+w2)
[c2

α(u2 + w2)f4 + s2
α(u2f5 + 2uwU42f2 + w2f6)]

ZZϕAϕA
g2

6(u2+w2)
(u2f5 + 2uwU42f2 + w2f6)

ZZφSa36φSa36
g2

6(u2+w2)
[s2

α(u2 + w2)f4 + c2
α(u2f5 + 2uwU42f5 + w2f6)]

ZZϕSa36φSa36
g2s2α

12(u2+w2)
{u2[4√

3U12(U22 + sW

√
1

3−4s2
W

U32) + 3U2
42 − 12sW U22U32√

3−4s2
W

+ 12s2
W

U2
32

−3+4s2
W

]

− 2uwU42[−3U12 + √
3(U22 + 4sW

√
1

3−4s2
W

U32)]

+ [−3U2
12 + 2

√
3U12(U22 + 4sW

√
1

3−4s2
W

U32) + 3(U2
22 + U2

42 + 4s2
W

U2
32

−3+4s2
W

)]w2}

Therefore, the Higgs triplet responsible for the second step of symmetry breaking ρ can be
represented as

(62)ρ ⇒
⎛
⎜⎝

−�+
2

v−ϕSa36+iA5√
2

ζ+
2

⎞
⎟⎠ .

Remind that both �+
2 and A5 are massless. By Table 9, we can identify them as Goldstone bosons

for the W and Z ones (neglecting the minus sign), respectively. This yields

(63)ρ ⇒
⎛
⎝ GW+

v+h+iGZ√
2

ζ+
2

⎞
⎠ .

Hence, all the effective couplings of the gauge bosons with scalar fields of the SM can be recov-
ered, which most of them are presented in Table 10.

In principle, we cannot put v′ = 0. The above analysis just shows that our calculations are
correct.
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Table 8
Non-zero quartic coupling constants of ZZ with two charged bosons

Vertex Coupling

ZZ�−
1 �+

1
g2

6(u2+w2)
{u2[4U2

22 − 16sW U22U32√
3−4s2

W

− 16s2
W

U2
32

−3+4s2
W

+3U2
42]−2uw[3U12 −√

3(U22 − 8sW U32√
3−4s2

W

)]U42

+ w2[3U2
12 + U2

22 + 8sW U22U32√
3−4s2

W

− 16s2
W

U2
32

−3+4s2
W

+ 2
√

3U12(U22 + 4sW U32√
3−4s2

W

) + 3U2
42]}

ZZ�−
1 ζ+

x − g2(m4xv−m3xv′)
6(u2+w2)

√
v2+v′2

{(u2 − w2)[3U12 − √
3(U22 − 8sW U32√

3−4s2
W

)]U42 − uw[3U2
12

− 3U22(U22 − 8sW U32√
3−4s2

W

) + 2
√

3U12(U22 + 4sW U32√
3−4s2

W

)]}, x = 1,2,3,4

ZZ�−
2 ζ+

x
g2(m3xv+m4xv′)

6(u2+w2)
√

v2+v′2
{(u2 − w2)[3U12 − √

3(U22 − 8sW U32√
3−4s2

W

)]U42 − uw[3U2
12

− 3U22(U22 − 8sW U32√
3−4s2

W

) + 2
√

3U12(U22 + 4sW U32√
3−4s2

W

)]}, x = 1,2,3,4

ZZζ−
y ζ+

x
g2

6(u2+w2)
{(m1ym1x + m2ym2x)(u2 + w2)[3U2

12 + U2
22 − 4sW U22U32√

3−4s2
W

− 4s2
W

U2
32

−3+4s2
W

− 2
√

3U12(U22 − 2sW U32√
3−4s2

W

)] + (m3ym3x + m4ym4x)[u2(3U2
12 + U2

22

+ 8sW U22U32√
3−4s2

W

− 16s2
W

U2
32

−3+4s2
W

+ 2
√

3U12(U22 + 4sW U32√
3−4s2

W

) + 3U2
42) + 2uw(3U12

− √
3(U22 − 8sW U32√

3−4s2
W

))U42 + w2(4U2
22 − 16sW U22U32√

3−4s2
W

− 16s2
W

U2
32

−3+4s2
W

+ 3U2
42)]}

5. Production of charged ζ±
4 via WZ fusion at LHC

The possibility to detect the neutral Higgs boson in the minimal version at e+e− colliders was
considered in [26] and production of the SM-like neutral Higgs boson in the 3–3–1 model with
right-handed neutrinos at the CERN LHC was considered in Ref. [27]. The decay and produc-
tion at the CERN LHC of the bilepton charged Higgs in the non-supersymmetric version of the
considering was given in Ref. [13]. This section is devoted to the decay modes and production of
the charged ζ±

4 at the CERN LHC.
Let us first discuss on the mass of this Higgs boson. Eq. (53) gives us a connection between its

mass and those of the singly-charged bilepton Y . The bilepton mass limit can be obtained from
the “wrong” muon decay μ− → e−νeν̃μ mediated, at the tree level, by both the W and the Y

boson. Taking into account of the famous experimental data [24]

(64)Rmuon ≡ Γ (μ− → e−νeν̃μ)

Γ (μ− → e−ν̃eνμ)
< 1.2% 90% CL

we get the constraint: Rmuon � M4
W

M4
Y

. Therefore, it follows that MY � 230 GeV. This bound is

consistent with that followed from the oblique consideration in Ref. [28]. However, the stronger
bilepton mass bound has been derived from consideration of experimental limit on lepton-number
violating charged lepton decays [29] of 440 GeV.
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Table 9
The non-zero coupling constants in the effective limit

Vertex Coupling Vertex Coupling

W+W−S′
5 g2vsγ ZW+ζ−

4
g2u

2
√

2cW

W+W−ϕSa36 − g2vc2γ

2cγ
ZA5ϕSa36 − gcγ

2cW

W−�+
1 ϕSa36

igs2γ

2 ZA6ϕSa36 − gsγ
2cW

W−�+
1 S′

5
igc2γ

2 ZA5S′
5

gsγ
2cW

W−�+
1 A5

gsγ
2 ZA6S′

5 − gcγ
2cW

W−�+
1 A6

gcγ
2 ZA′

1ϕS24
g

2cW

W−�+
2 ϕSa36

igc2γ

2 ZZϕS24 − g2u

2
√

2c2
W

W−�+
2 S′

5 − igs2γ

2 ZZϕSa36 − g2vc2γ

2c2
W

cγ

W−�+
2 A6 − gsγ

2 ZZS′
5

g2vsγ

c2
W

W−�+
2 A5

gcγ
2 ZΨ +Ψ − − igs2

W
2cW

,Ψ = ζ2, ζ3

W−ζ+
1 H 0

X
ig√

2
ZΨ +Ψ − igc2W

2cW
,Ψ = �1, �2, ζ1, ζ4

W−ζ+
4 ϕS24

ig
2 ZZΨ −Ψ + 2g2s4

W

c2
W

,Ψ = ζ2, ζ3

W−ζ+
4 A′

1 − g
2 ZZΨ −Ψ + g2c2

2W

2c2
W

,Ψ = �1, �2, ζ1, ζ4

AW+�−
2 − e2v

2sW cγ
WWHH

g2

2 ,H = A′
1, ϕSa36 , S′

5,A6,H 0
X

, ζ1, ζ4, �1, �2

ZW+�−
2

e2v
2cW cγ

ZZHH
g2

2c2
W

,H = S′
5, ϕS24 ,H 0

X
,ϕSa36 , φSa36 ,A′

1,A5,A6

Table 10
The SM coupling constants in the effective limit

Vertex Coupling Vertex Coupling

WWhh
g2

2 GW GW A ie

WWh
g2

2 v WWGZGZ
g2

2

WGW h − ig
2 WWGW GW

g2

2

WGW GZ
g
2 ZZh

g2

2c2
W

v

ZZhh
g2

2c2
W

ZZGZGZ
g2

2c2
W

AWGW
g2

2 vsW ZWGW − g2

2 vsW tW

ZGZh − g
2cW

ZGW GW
ig

2cW
(1 − 2s2

W
)

Taking into account that, in the effective approximation, ζ−
4 is the bilepton, we get the domi-

nant decay channels as follows

(65)ζ−
4 →

{
lνl, Ucd, ucD,

ZW−, H̃ 0W̃−.
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Table 11
Trilinear coupling constants of W+ with neutral gauge boson and the charged scalar boson

Vertex Coupling

ZW+�−
2

g2
√

v2+v′2

12(u2+w2)
{u2[3U12 + √

3(U22 − 8sW U32√
3−4s2

W

)] + 6uwU42 − 2
√

3w2(U22 + 4sW U32√
3−4s2

W

)}

ZW+ζ−
x − g2

4u
√

u2+u′2(u2+w2)
3
2

[(u2 − w2)U42 − uw(U12 + √
3U22)][m1x(u2 − u′2)(u2 + w2)

+ u(
√

u2 + u′2
√

u2 + w2(m3xv + m4xv′) + 2m2xu′(u2 + w2))], x = 1,2,3,4

AW+�−
2

g2
√

v2+v′2

12(u2+w2)
{u2[3U11 + √

3(U21 − 8sW U31√
3−4s2

W

)] + 6uwU41 − 2
√

3w2(U21 + 4sW U31√
3−4s2

W

)}

AW+ζ−
x − g2

4u
√

u2+u′2(u2+w2)
3
2

[(u2 − w2)U41 − uw(U11 + √
3U21)][m1x(u2 − u′2)(u2 + w2)

+ u(
√

u2 + u′2
√

u2 + w2(m3xv + m4xv′) + 2m2xu′(u2 + w2))], x = 1,2,3,4

Assuming that masses of the exotic quarks (U,Dα) and both gaugino and Higgsino are larger
than Mζ±

4
, we come to the fact that the hadron and sparticle modes are absent in the decay of

the charged Higgs boson. Because the Yukawa couplings of ζ±
4 l∓ν are very small, the coupling

of a singly-charged Higgs boson (ζ±
4 ) with the weak gauge bosons, ζ±

4 W∓Z, can dominate.
Note that the charged Higgs bosons in doublet models such as the two-Higgs doublet model
or the minimal supersymmetric Standard Model, have both hadronic and leptonic modes [21].
This is a specific feature of the model under consideration. It is of particular importance for the
electroweak symmetry breaking. Its magnitude is directly related to the structure of the extended
Higgs sector under global symmetries [30]. This coupling can appear at the tree level in models
with scalar triplets, while it is induced at the loop level in multi scalar doublet models. The
coupling, in our model, differs from zero at the tree level due to the fact that the ζ±

4 belongs to a
triplet.

Thus, for the charged Higgs boson ζ±
4 , it is important to study the couplings given by the

interaction Lagrangian

(66)Lint = fZWζ4ζ
±
4 W∓

μ Zμ,

where fZWζ4 , at tree level, is given in Table 11. The same as in [20], the dominant rate is due to
the diagram connected with the W and Z bosons. Putting necessary matrix elements in Table 11,
we get

fZWζ4 = g2w2tθ

2(1 + t2
β)

v2(2t2
γ − t2

β + 1) + 1+t2
β

t2
β

(u2 + w2)

X

×
sϕ

√
(4c2

W − 1)(1 + 4t2
2θ ) − cϕ√

c2
W + t2

2θ (4c2
W − 1)

√
1 + 4t2

2θ

,

where

X2 = v4t2
γ V 2 + u2 + w2

t2
β

v4(t2
β + t4

γ + 2t2
γ t2

β + 2t2
γ

)

+ (u2 + w2)2

t4
v2(t4

β + t2
γ + 2t2

γ t2
β + 2t2

β

) + (u2 + w2)3

t6

(
1 + t2

β

)
.

β β
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Thus, the form factor, at the tree-level, is obtained by

F ≡ fZWζ4

gMW

(67)= w2tθ

V (1 + t2
β)

v2(2t2
γ − t2

β + 1) + 1+t2
β

t2
β

(u2 + w2)

X

sϕ

√
(4c2

W − 1)(1 + 4t2
2θ ) − cϕ√

c2
W + t2

2θ (4c2
W − 1)

√
1 + 4t2

2θ

.

The decay width of ζ±
4 → W±

i Zi , where i = L,T represent respectively the longitudinal and
transverse polarizations, is given by [20]

Γ
(
ζ±

4 → W±
i Zi

) = Mζ±
4

λ1/2(1,w, z)

16π
|Mii |2,

where λ(1,w, z) = (1 −w − z)2 − 4wz, w = M2
W/M2

ζ±
4

and z = M2
Z/M2

ζ±
4

. The longitudinal and

transverse contributions are given in terms of F by

|MLL|2 = g2

4z
(1 − w − z)2|F |2, |MT T |2 = 2g2w|F |2.

For the case of Mζ±
4

� MZ , we have |MT T |2/|MLL|2 ∼ 8M2
WM2

Z/M4
ζ±

4
which implies that the

decay into a longitudinally polarized weak boson pair dominates that into a transversely polarized
one.

Next, let us study the impact of the ζ±
4 W∓Z vertex on the production cross section of pp →

W±∗Z∗X → ζ±
4 X which is a pure electroweak process with high pT jets going into the forward

and backward directions from the decay of the produced scalar boson without color flow in the
central region. The hadronic cross section for pp → ζ±

4 X via W±Z fusion is expressed in the
effective vector boson approximation [31] by

σeff
(
s,M2

ζ±
4

) � 16π2

λ(1,w, z)M3
ζ±

4

∑
λ=T ,L

Γ
(
ζ±

4 → W±
λ Zλ

)
τ

dL
dτ

∣∣∣∣
pp/W±

λ Zλ

,

where τ = M2
ζ±

4
/s, and

dL
dτ

∣∣∣∣
pp/W±

λ Zλ

=
∑
ij

1∫
τ

dτ ′

τ ′

1∫
τ ′

dx

x
fi(x)fj (τ

′/x)
dL
dξ

∣∣∣∣
qiqj /W±

λ Zλ

,

with τ ′ = ŝ/s and ξ = τ/τ ′. Here fi(x) is the parton structure function for the ith quark, and

dL
dξ

∣∣∣∣
qiqj /W±

T ZT

= c

64π4

1

ξ
ln

(
ŝ

M2
W

)
ln

(
ŝ

M2
Z

)
× [

(2 + ξ)2 ln(1/ξ) − 2(1 − ξ)(3 + ξ)
]
,

dL
dξ

∣∣∣∣
qiqj /W±

L ZL

= c

16π4

1

ξ

[
(1 + ξ) ln(1/ξ) + 2(ξ − 1)

]
,

where c = g4c2
θ

16c2
W

[g2
1V (qj ) + g2

1A(qj )] with g1V (qj ), g1A(qj ) for quark qj are given in Table I of

Ref. [10].
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Fig. 1. Hadronic cross section for production of charged ζ±
4 via WZ fusion as a function of the charged Higgs boson

mass for five cases of sin θ .

Using CTEQ6L [32], in Fig. 1, we plot σeff(s,M
2
ζ±

4
) at

√
s = 14 TeV as a function of Mζ4

in range of 440–2000 GeV, where the parameters in the F factor are set as follows v′ = 0,
v = 246 GeV, tβ = 1, and tϕ obtained from Ref. [10]. If the mass of the charged Higgs boson is
in range of 440 GeV and sθ = 0.08, the cross section can exceed 35.8 fb: i.e., 10 740 of ζ±

4 can
be produced at the integrated LHC luminosity of 300 fb−1.

6. Conclusions

In this paper we have explored the Higgs sector of the supersymmetric economical 3–3–1
model and found more new interesting features in this sector. We have revised the charged Higgs
sector, i.e., the exact eigenvalues and states of the charged Higgs fields were obtained without
any approximation. In this model, there are three Higgs bosons having masses equal to that of
the gauge bosons and one neutral complex Higgs boson with mass of the neutral non-Hermitian
bilepton X0. Therefore, as in the gauge sector, we get the law of Pythagoras among Higgs boson
masses: m2

ζ+
4

= m2
H 0

X

+ m2
�+

1
.

There is one scalar boson with mass of 91.4 GeV, which is closed to the Z boson mass and in
good agreement with present limit: 89.8 GeV at 95% CL.

The mass matrix of charged Higgs bosons gives two physical fields ζ+
2 and ζ+

3 with their
square mass are the same value but opposite sign. To solve this problem, we have got very
interesting relation which leads to w � w′, u � u′ in high mass limit.

In the model under consideration, at the tree level, the lightest Higgs boson is the charged
with the mass equal to those of the W boson. This is in agreement with the current experimental
limit: 79.3 GeV at 95% CL.

It is worth mentioning that the Higgs sector in this model is very constrained. At the tree
level, we cannot fix only one heavy scalar Higgs boson φSa36 with mass, while all remaining
fields gain masses of the gauge bosons in the model. This is nice feature of the supersymmetric
version.

The interactions among the Standard Model gauge bosons and scalar fields in the framework
of the supersymmetric economical 3–3–1 model are also presented. From these couplings, all
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scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their
couplings with the usual gauge bosons such as the photon, the charged W± and the neutral Z,
without any additional condition, are recovered.

Despite the mixing among the photon with the non-Hermitian neutral bilepton X0 as
well as with the Z and the Z′ gauge bosons, the electromagnetic couplings remain un-
changed.

After all we focused attention to the singly-charged Higgs boson ζ±
4 with mass equal to the

bilepton mass MY . Mass of the ζ±
4 is estimated to be larger than 440 GeV. This boson, in

difference with those arisen in the Higgs doublet models, does not have the hadronic and lep-
tonic decay modes. The trilinear coupling ZW±ζ∓

4 which differs, at the tree level, while the
similar coupling of the photon γW±ζ∓

4 as expected, vanishes. If the mass of the above men-
tioned Higgs boson is in range of 440 GeV, however, the cross section can exceed 35.8 fb: i.e.,
10 740 of ζ±

4 can be produced at the CERN LHC for the luminosity of 300 fb−1. By mea-
suring this process we can obtain useful information to determine the structure of the Higgs
sector.

LEPII placed the problem of Higgs physics at the forefront of supersymmetry phenomenol-
ogy. While earlier one might have viewed the Higgs fields as just one of many features of low
energy supersymmetric models, the constraints on the Higgs mass are now problematic. In the
model under consideration, the Higgs bosons gain masses equal to that of the gauge bosons. This
feature deserves further studies.
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Appendix A. Mixing matrix for neutral scalars

(A.1)

⎛
⎜⎜⎜⎜⎜⎝

S1
S2
S3
S4
S5
S6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

cβsθ −sβcθ −cβcθ −sαsβsθ −cαsβsθ 0
cβcθ sβsθ cβsθ −sαsβcθ −cαsβcθ 0
sβsθ −cβcθ sβcθ sαcβsθ cαcβsθ 0
sβcθ cβsθ −sβsθ sαcβcθ cαcβcθ 0

0 0 0 −cαcγ sαcγ sγ
0 0 0 cαsγ −sαsγ cγ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

S′
1a

ϕS24

φS24

ϕSa36

φSa36

S′
5

⎞
⎟⎟⎟⎟⎟⎠ .

Appendix B. Mixing matrix for neutral pseudoscalars

(B.1)

⎛
⎜⎝

A1
A2
A3
A4

⎞
⎟⎠ =

⎛
⎜⎝

sβ 0 cβsθ cβcθ

0 sβ cβcθ −cβsθ
−cβ 0 sβsθ sβcθ

0 −cβ sβcθ −sβsθ

⎞
⎟⎠

⎛
⎜⎝

A′
1

A′
2

ϕA

φA

⎞
⎟⎠ .

Two massless physical fields are A5 and A6.
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Appendix C. Mixing matrix for charged scalars

(C.1)

⎛
⎜⎜⎜⎜⎜⎝

χ

χ ′
ρ1
ρ2
ρ′

1
ρ′

2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

M11 M12 M13 M14 0 0
M21 M22 M23 M24 0 0
m31sθ m32sθ m33sθ m34sθ −cθ sγ −cθcγ

m31cθ m32cθ m33cθ m34cθ sθ sγ sθ cγ

m41sθ m42sθ m43sθ m44sθ cθ cγ −cθ sγ
m41cθ m42cθ m43cθ m44cθ −sθ cγ sθ sγ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ζ1
ζ2
ζ3
ζ4
�1
�2

⎞
⎟⎟⎟⎟⎟⎠ ,

where

M11 = m11sβ + m21cβ, M12 = m12sβ + m22cβ,

M13 = m13sβ + m23cβ, M14 = m14sβ + m24cβ,

M21 = m21sβ − m11cβ, M22 = m22sβ − m12cβ,

M23 = m23sβ − m13cβ, M24 = m24sβ − m14cβ

and

m11 =
g
√

(t2
β + 1)(u′2 + w′2)

2
√

m2
ζ4

, m12 = 1√
u′2 + w′2 + v2

v√
1 + t2

β

,

m13 = 1√
u2 + v′2 + w2

v′tβ√
1 + t2

β

, m14 = k1√
k2

1 + k2
2 + k2

3 + 1
,

m21 = 0 = m33 = m42,

m22 = 1√
u′2 + w′2 + v2

v′√
1 + t2

β

, m23 = 1√
u2 + v′2 + w2

−v′√
1 + t2

β

,

m24 = k2√
k2

1 + k2
2 + k2

3 + 1
, m31 = −gv

2
√

m2
ζ4

,

m32 =
√

u′2 + w′2
√

u′2 + w′2 + v2
, m34 = k3√

k2
1 + k2

2 + k2
3 + 1

,

m41 = −gv′

2
√

m2
ζ4

, m43 =
√

u2 + w2
√

v′2 + w2 + u2
, m44 = 1√

k2
1 + k2

2 + k2
3 + 1

.
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