569 research outputs found

    Reinforcement learning method for plug-in electric vehicle bidding

    Get PDF
    This study proposes a novel multi-agent method for electric vehicle (EV) owners who will take part in the electricity market. Each EV is considered as an agent, and all the EVs have vehicle-to-grid capability. These agents aim to minimise the charging cost and to increase the privacy of EV owners due to omitting the aggregator role in the system. Each agent has two independent decision cores for buying and selling energy. These cores are developed based on a reinforcement learning (RL) algorithm, i.e. Q-learning algorithm, due to its high efficiency and appropriate performance in multi-agent methods. Based on the proposed method, agents can buy and sell energy with the cost minimisation goal, while they should always have enough energy for the trip, considering the uncertain behaviours of EV owners. Numeric simulations on an illustrative example with one agent and a testing system with 500 agents demonstrate the effectiveness of the proposed method

    Analyzing and Quantifying the Intrinsic Distributional Robustness of CVaR Reformulation for Chance Constrained Stochastic Programs

    Get PDF
    Chance constrained program (CCP) is a popular stochastic optimization method in power system planning and operation problems. Conditional Value-at-Risk (CVaR) provides a convex approximation for chance constraints which are nonconvex. Although CCP assumes an exact empirical distribution, and the optimum of a stochastic programming model is thought to be sensitive in the designated probability distribution, this letter discloses that CVaR reformulation of chance constraint is intrinsically robust. A pair of indices are proposed to quantify the maximum tolerable perturbation of the probability distribution, and can be computed from a computationally-cheap dichotomy search. An example on the coordinated capacity optimization of energy storage and transmission line for a remote wind farm validates the main claims. The above results demonstrate that stochastic optimization methods are not necessarily vulnerable to distributional uncertainty, and justify the positive effect of the conservatism brought by the CVaR reformulation.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Cost-efficient Deployment of Storage Unit in Residential Energy Systems

    Get PDF
    With the mushrooming of distributed renewable generation, energy storage unit (ESU) is becoming increasingly important in residential energy systems. This letter proposes a fractional programming model to determine the optimal power and energy capacities of residential ESUs, aiming at minimizing the ratio between the reduced electricity tariff and the investment cost of ESU, ensuring the minimal payback time. A decomposition algorithm is developed to solve the fractional program based on convex optimization; the subproblem is a dual convex quadratic program which provides cutting planes, and the master problem comes down to a small linear program after variable transformations. Compared to the widely used cost-minimum method, the proposed model is cost-efficient: it enjoys a higher rate of return which is usually welcomed by smaller consumers.© 2020 Institute of Electrical and Electronics Engineersfi=vertaisarvioimaton|en=nonPeerReviewed

    Optimal management of demand response aggregators considering customers' preferences within distribution networks

    Get PDF
    In this paper, a privacy-based demand response (DR) trading scheme among end-users and DR aggregators (DRAs) is proposed within the retail market framework and by Distribution Platform Optimizer (DPO). This scheme aims to obtain the optimum DR volume to be exchanged while considering both DRAs’ and customers’ preferences. A bilevel programming model is formulated in a day-ahead market within retail markets. In the upper-level problem, the total operation cost of the distribution system, which consists of DRAs’ cost and other electricity trading costs, is minimized. The production volatility of renewable energy resources is also taken into account in this level through stochastic two-stage programming and MonteCarlo Simulation method. In the lower-level problem, the electricity bill for customers is minimized for customers. The income from DR selling is maximized based on DR prices through secure communication of household energy management systems (HEMS) and DRA. To solve this convex and continuous bilevel problem, it is converted to an equivalent single-level problem by adding primal and dual constraints of lower level as well as its strong duality condition to the upper-level problem. The results demonstrate the effectiveness of different DR prices and different number of DRAs on hourly DR volume, hourly DR cost and power exchange between the studied network and the upstream network.©2020 The Institution of Engineering and Technology. This paper is a postprint of a paper submitted to and accepted for publication in IET Generation, Transmission and Distribution and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.fi=vertaisarvioitu|en=peerReviewed

    Laser-induced crystalline optical waveguide on glass fibre

    No full text
    We report for the first time the fabrication of a novel glass ribbon fibre with laser-induced single (or quasi-single) crystalline (La,Yb)BGeO5 optical waveguide

    Pumping in quantum dots and non-Abelian matrix Berry phases

    Full text link
    We have investigated pumping in quantum dots from the perspective of non-Abelian (matrix) Berry phases by solving the time dependent Schr{\"o}dinger equation exactly for adiabatic changes. Our results demonstrate that a pumped charge is related to the presence of a finite matrix Berry phase. When consecutive adiabatic cycles are performed the pumped charge of each cycle is different from the previous ones

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    Brane-bulk energy exchange : a model with the present universe as a global attractor

    Full text link
    The role of brane-bulk energy exchange and of an induced gravity term on a single braneworld of negative tension and vanishing effective cosmological constant is studied. It is shown that for the physically interesting cases of dust and radiation a unique global attractor which can realize our present universe (accelerating and 0<Omega_{m0}<1) exists for a wide range of the parameters of the model. For Omega_{m0}=0.3, independently of the other parameters, the model predicts that the equation of state for the dark energy today is w_{DE,0}=-1.4, while Omega_{m0}=0.03 leads to w_{DE,0}=-1.03. In addition, during its evolution, w_{DE} crosses the w_{DE}=-1 line to smaller values.Comment: 8 pages, 2 figures, RevTex; references added, to appear in JHE

    Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe

    Full text link
    We have considered N-dimensional Einstein field equations in which four-dimensional space-time is described by a FRW metric and that of extra dimensions by an Euclidean metric. We have chosen the exponential forms of scale factors a and d numbers of b in such a way that there is no singularity for evolution of the higher dimensional Universe. We have supposed that the Universe is filled with K-essence, Tachyonic, Normal Scalar Field and DBI-essence. Here we have found the nature of potential of different scalar field and graphically analyzed the potentials and the fields for three scenario namely Emergent Scenario, Logamediate Scenario and Intermediate Scenario. Also graphically we have depicted the geometrical parameters named statefinder parameters and slow-roll parameters in the higher dimensional cosmology with the above mentioned scenarios.Comment: 21 pages, 36 figure

    Targeting the Ataxia Telangiectasia Mutated-null Phenotype in Chronic Lymphocytic Leukemia with Pro-oxidants

    Get PDF
    Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumours with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia
    corecore