1,000 research outputs found

    Self-consistent quantum effects in the quark meson coupling model

    Full text link
    We derive the equation of state of nuclear matter including vacuum polarization effects arising from the nucleons and the sigma mesons in the quark-meson coupling model which incorporates explicitly quark degrees of freedom with quark coupled to the scalar and vector mesons. This leads to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The {\it in-medium} nucleon and sigma meson masses are also calculated in a self-consistent manner.Comment: 10 pages, latex, 5 figure

    Theory of a Scanning Tunneling Microscope with a Two-Protrusion Tip

    Full text link
    We consider a scanning tunneling microscope (STM) such that tunneling occurs through two atomically sharp protrusions on its tip. When the two protrusions are separated by at least several atomic spacings, the differential conductance of this STM depends on the electronic transport in the sample between the protrusions. Furthermore two-protrusion tips commonly occur during STM tip preparation. We explore possible applications to probing dynamical impurity potentials on a metallic surface and local transport in an anisotropic superconductor.Comment: revtex, 11 pages, 6 figures upon reques

    An efficient direct solver for a class of mixed finite element problems

    Get PDF
    In this paper we present an efficient, accurate and parallelizable direct method for the solution of the (indefinite) linear algebraic systems that arise in the solution of fourth-order partial differential equations (PDEs) using mixed finite element approximations. The method is intended particularly for use when multiple right-hand sides occur, and when high accuracy is required in these solutions. The algorithm is described in some detail and its performance is illustrated through the numerical solution of a biharmonic eigenvalue problem where the smallest eigenpair is approximated using inverse iteration after discretization via the Ciarlet–Raviart mixed finite element method

    Photophysical characterizations of 2-(4-Biphenylyl)-5 phenyl-1,3,4- oxadiazole in restricted geometry

    Full text link
    Langmuir and Langmuir-Blodgett (LB) films of nonamphiphilic 2-(4-Biphenylyl)-5 phenyl-1,3,4- oxadiazole (abbreviated as PBD) mixed with stearic acid (SA) as well as also with the inert polymer matrix poly(methyl methacrylate) (PMMA) have been studied. Surface pressure versus area per molecule (-A) isotherms studies suggest that PBD molecules very likely stand vertically on the air-water interface and this arrangement allows the PBD molecules to form stacks and remain sandwiched between SA/PMMA molecules. At lower surface pressure phase separation between PBD and matrix molecules occur resulting due to repulsive interaction. However at higher surface pressure PBD molecules form aggregates. The UV-Vis absorption and Steady state fluorescence spectroscopic studies of the mixed LB films of PBD reveal the nature of the aggregates. H-type aggregates predominates in the mixed LB films whereas I-type aggregates predominates in the PBD-PMMA spin coated films. The degree of deformation produced in the electronic levels are largely affected by the film thickness and the surface pressure of lifting.Comment: 15 pages, 6 figure

    Surface electronic structure of Sr2RuO4

    Full text link
    We have addressed the possibility of surface ferromagnetism in Sr2RuO4 by investigating its surface electronic states by angle-resolved photoemission spectroscopy (ARPES). By cleaving samples under different conditions and using various photon energies, we have isolated the surface from the bulk states. A comparison with band structure calculations indicates that the ARPES data are most readily explained by a nonmagnetic surface reconstruction.Comment: 4 pages, 4 figures, RevTex, submitted to Phys. Rev.

    Hot Nuclear Matter in Asymmetry Chiral Sigma Model

    Full text link
    In the frame work of SU(2) chiral sigma model, the nuclear matter properties at zero and finite temperature have been investigated. We have analyzed the nuclear matter equation of state by varying different parameters, which agrees well with the one derived from the heavy-ion collision experiment at extreme densities and reliable realistic(DBHF) model at low density region. We have then calculated the temperature dependent asymmetric nuclear matter, also investigated the critical temperature of liquid gas phase transition and compared with the experimental data. We found that the critical temperature in our model is in the range of 14-20 MeV.Comment: 21 pages, 10 figures, to be published in Nuclear Physics

    Excluded Volume Effects in the Quark Meson Coupling Model

    Full text link
    Excluded volume effects are incorporated in the quark meson coupling model to take into account in a phenomenological way the hard core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard core radii, and the equation of state becomes stiffer as the size of the hard core increases.Comment: 14 pages, revtex, 6 figure

    Physical properties of FeSe0.5_{0.5}Te0.5_{0.5} single crystals grown under different conditions

    Full text link
    We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5_{0.5}Te0.5_{0.5} single crystals grown by self-flux and Bridgman methods. The samples were prepared from starting materials of different purity at various temperatures and cooling rates. The lowest values of the susceptibility in the normal state, the highest transition temperature TcT_c of 14.5 K, and the largest heat-capacity anomaly at TcT_c were obtained for pure (oxygen-free) samples. The critical current density jcj_c of 8×1048 \times 10^4 A/cm2^2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the cation and anion sites. The impure samples show increased jcj_c up to 2.3×1052.3 \times 10^5 A/cm2^2 due to additional pinning centers of Fe3_3O4_4. The upper critical field Hc2H_{c2} of 500\sim 500 kOe is estimated from the resistivity study in magnetic fields parallel to the \emph{c}-axis. The anisotropy of the upper critical field γHc2=Hc2ab/Hc2c\gamma_{H_{c2}} = H_{_{c2}}^{ab}/H_{_{c2}}^{c} reaches a value 6\sim 6 at TTcT\longrightarrow T_c. Extremely low values of the residual Sommerfeld coefficient for pure samples indicate a high volume fraction of the superconducting phase (up to 97%). The electronic contribution to the specific heat in the superconducting state is well described within a single-band BCS model with a temperature dependent gap Δ0=27(1)\Delta_0 = 27(1) K. A broad cusp-like anomaly in the electronic specific heat of samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the interstitial Fe2+^{2+} ions. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.Comment: 11 pages, 11 figures, 3 table

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal
    corecore