25 research outputs found

    Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure

    Full text link
    Inflation plays a central role in our current understanding of the universe. According to the standard viewpoint, the homogeneous and isotropic mode of the inflaton field drove an early phase of nearly exponential expansion of the universe, while the quantum fluctuations (uncertainties) of the other modes gave rise to the seeds of cosmic structure. However, if we accept that the accelerated expansion led the universe into an essentially homogeneous and isotropic space-time, with the state of all the matter fields in their vacuum (except for the zero mode of the inflaton field), we can not escape the conclusion that the state of the universe as a whole would remain always homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann and D. Sudarsky, "On the quantum origin of the seeds of cosmic structure," Class. Quant. Grav. 23, 2317-2354 (2006)] that a collapse (representing physics beyond the established paradigm, and presumably associated with a quantum-gravity effect a la Penrose) of the state function of the inflaton field might be the missing element, and thus would be responsible for the emergence of the primordial inhomogeneities. Here we will discuss a formalism that relies strongly on quantum field theory on curved space-times, and within which we can implement a detailed description of such a process. The picture that emerges clarifies many aspects of the problem, and is conceptually quite transparent. Nonetheless, we will find that the results lead us to argue that the resulting picture is not fully compatible with a purely geometric description of space-time.Comment: 53 pages, no figures. Revision to match the published versio

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Directional growth of a clonal bromeliad species in response to spatial habitat heterogeneity

    No full text
    Item does not contain fulltextHabitat selection by directional growth of plants has previously been investigated but field evidence for this phenomenon is extremely scarce. In this study we demonstrate directional clonal growth in Aechmea nudicaulis, a monocarpic, perennial bromeliad native to spatially heterogeneous sandy coastal plains (restinga) in Brazil. This habitat is characterized by a matrix of bare sand with interspersed vegetation islands. Due to very high soil surface temperatures and other stress factors such as drought, A. nudicauliscan only germinate inside vegetation islands. Nevertheless, this species is very common on bare sand. In this study we tested the hypothesis that clonal fragments occurring at the border and inside vegetation islands show habitat selection by growing preferentially towards the bare sand habitat (i.e. away from the center of vegetation islands). We randomly chose 116 clonal fragments in two distinct micro-environments (inside vegetation islands, and in the border area between bare sand and vegetation islands) in the natural habitat of A.nudicaulisand measured their growth direction in relation to the island center. We measured the growth directions of entire clonal fragments (defined as the line that connects the oldest and the youngest ramets of a clonal fragment) as well as the growth direction of the youngest internode on each fragment (the growth direction of the youngest ramet in relation to its parent ramet). We used Monte Carlo simulations to test for deviations from randomness in the growth direction of clonal fragments and individual internodes. The clonal fragments of A.nudicaulis showed a significant tendency to grow away from the center of vegetation islands. In other words, the main growth direction of clonal fragments growing inside vegetation islands or at the border between bare sand and vegetation islands was preferentially directed towards bare sand environments. Individual internodes at the border of vegetation islands also exhibited this tendency to grow towards the outside of vegetation islands, but internodes growing inside vegetation islands did not show directional growth. These results provide the first field evidence for habitat selection through directional growth of a clonal plant species
    corecore